首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This article presents the effects of strong ionizing radiations on the physico‐chemical modifications of aliphatic or aromatic amine‐cured epoxy resins based on diglycidyl ether of bisphenol A (DGEBA). Such epoxy resins have a considerable number of applications in the nuclear industrial field and are known to be very stable under moderate irradiation conditions. Using extensively high resolution solid‐state 13C‐NMR spectroscopy we show that the aliphatic amine‐cured resin (DGEBA‐TETA) appears much more sensitive to gamma rays than the aromatic amine‐cured one (DGEBA‐DDM). On the one hand, qualitative analyses of the high resolution solid‐state 13C‐NMR spectra of both epoxy resins, irradiated under similar conditions (8.5 MGy), reveal almost no change in the aromatic amine‐cured resin whereas new resonances are observed for the aliphatic amine‐cured resin. These new peaks were interpreted as the formation of new functional groups such as amides, acids and/or esters and to alkene groups probably formed in the aliphatic amine skeleton. On the other hand, molecular dynamics of these polymers are investigated by measuring the relaxation times, TCH, T1ρH and T1C , before and after irradiation. The study of relaxation data shows the formation, under irradiation, of a more rigid network, especially for the aliphatic amine‐cured system and confirms that aromatic amine‐cured resin [DGEBA‐4,4′‐diaminodiphenylmethane(DDM)] is much less affected by ionizing radiations than the aliphatic amine‐cured resin [DGEBA‐triethylenetetramine(TETA)]. Moreover, it has been shown that the molecular modifications generated by irradiation on the powder of the aliphatic‐amine‐cured resin appear to be homogeneously distributed inside the polymers as no phase separations can be deduced from the above analyses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
尚亚卓  程元荣 《高分子科学》2017,35(11):1428-1435
Biphenyl-contained monomer of 1,4-bis[2-(3,4-epoxy cyclohexyl ethyl) dimethylsilyl] biphenyl(BP-Si H-EP) was prepared via hydrosilylation reaction of 1,4-bis(dimethylsilyl) biphenyl(BP-Si H) and 1,2-epoxy-4-vinylcyclohexane in the presence of Karstedt's catalyst. ~1H-NMR, ~(13)C-NMR and FTIR were used to characterize the structure of the obtained monomer. BP-Si H-EP was then cured by methyl hexahydrophthalic anhydride(Me HHPA) with 1-cyanoethyl-2-ethyl-4-methylimidazole as an accelerator. The polymerization behavior was studied by DSC. The results of DMA measurement demonstrate that the cured BP-Si H-EP/Me HHPA can maintain high storage modulus(1 GPa) in a wide range of temperature up to 176 °C. According to the damping factor curve of DMA, cured BP-Si H-EP/Me HHPA exhibits a high glass transition temperature(T_g) of 192 ° C, which is 20 ° C higher than that of cured 1,4-bis[2-(3,4-epoxy cyclohexyl ethyl)dimethylsilyl] benzene(DEDSB)/Me HHPA. TGA results show that cured BP-Si H-EP/Me HHPA has good thermal stability(T_(5% )= 339 ° C) due to the high heat-resistance of rigid biphenyl group. Moreover, the crosslinking density of cured BP-Si H-EP/Me HHPA should be lower than that of cured DEDSB/Me HHPA estimated from their chemical structures, which conflicts with the calculated results based on the rubber elasticity equation. The inconsistence indicates that the calculated crosslinking densities are not comparable, possibly owing to their differences in the rigidity of polymer chains and intermolecular interaction.  相似文献   

3.
Epoxy resins (DGEBA) were cured by cationic latent thermal catalysts, that is, N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH) to investigate the effect of substituted benzene group on cure kinetics and mechanical properties of epoxy system. Differential scanning calorimetry (DSC) was undertaken for activation energy of the system. It was also characterized in terms of flexural, fracture toughness, and Izod impact strengths for the mechanical tests. As a result, the cure reaction of both epoxy systems resulted in an autocatalytic kinetic mechanism accelerated by hydroxyl groups. Also, the conversion and cure activation energy of the DGEBA/BQH system were higher than those of DGEBA/BPH system. The mechanical properties of the DGEBA/BQH system were also superior to those of the DGEBA/BPH system, as well as the morphology. This was probably due to the consequence of the effect of the substituted benzene group of the BQH catalyst, resulting in increasing the crosslinking density and structural stability in the epoxy system studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2419–2429, 2004  相似文献   

4.
Three cured epoxy resins were investigated under various degradation conditions by Fourier transform infrared (FTIR) spectroscopy for measurement. The epoxy resins were the diglyadyl ethers of bisphenol A (DGEBA), phenolphthalein (DGEPP), and 9,9-bis(4-hydroxyphenyl)fluorene (DGEBF). The thermal stability order of functional groups that incurred DGEBA was total methyl group ~ total benzene ring > methylene > p-phenylene > ether linkage > isopropylidene. The oxidative thermal and photodegradation processes were found to be related to the classical autocatalytical oxidation of aliphatic hydrocarbon segments. The Wieland rearrangement, Norrish-type reaction, Claisen rearrangement, and other possible degradation mechanisms were suggested by the data.  相似文献   

5.
Phenyl bisthioureas: 4,4′-(bisthiourea)diphenylmethane (DTM), 4,4′-(bisthiourea)diphenyl ether (DTE), and 4,4′-(bisthiourea)diphenyl sulfone (DTS) were synthesized and used as curing agents for the epoxy resin diglydicyl ether bisphenol A (DGEBA). Synthesized phenyl bisthioureas were characterized using FT-IR and 1H-NMR analysis. For comparison studies the epoxy system was also cured using the conventional aromatic amine 4,4′-diaminodiphenyl ether (DDE). Curing kinetics of epoxy/amine system was studied by dynamic and isothermal differential scanning calorimeter (DSC). Curing kinetic was evaluated based on model-free kinetics (MFK) and ASTM E 698 model, and the activation energy was compared with DDE. Curing system of phenyl bisthiourea link (DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS) shows two exothermic peaks, while that of the conventional aromatic amines showed only a single peak. The initial exothermic peak is due to the primary nitrogen of the thiourea group, and the exotherm at higher temperature is due to the presence of thiourea groups. Glass transition temperature (T g) of DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS cured resins were lowered by 323 K when compared to the widely used diaminodiphenyl ether (DDE) cured resin. Oxidation induction temperature measurement performed on DSC suggests that the DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS system cured resins has better oxidative stability when compared to cured DGEBA/DDE resin system.  相似文献   

6.
Abstract

A novel cyclotriphosphazene-based epoxy monomer, hexa-[4-(glycidyloxycarbonyl) phenoxy]cyclotriphosphazene (HGCP), was synthesized via a four-step synthetic route, and fully characterized by 1H, 13C, and 31P NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Thermosetting systems based on HGCP with three curing agents, for example, 4,4′-diaminodiphenylsulfone (DDS), 4,4′-diaminodiphenylmethane (DDM), and dicyandiamide (DICY), were used for making a comparison of their thermal curing behaviors. The curing behaviors were measured by differential scanning calorimetry. Moreover, flame retardancy of HGCP thermosetting systems was estimated by Limiting Oxygen Index (LOI) and Vertical Burning Test (UL-94). The resulting HGCP thermosetting systems exhibited better flame retardancy than the common epoxy resins diglycidyl ether of bisphenol A (DGEBA) and the regular brominated bisphenol A epoxy resin (TBBA) cured by DDS, respectively. When HGCP was cured by DDS, its thermosetting system gave the most char residues, met the UL-94 V-0 classification, and had a limiting oxygen index value greater than 35.  相似文献   

7.
The fluorene-containing epoxy, diglycidyl ether of 9,9-bis(4-hydroxyphenyl) fluorene (DGEBF) was synthesized by a two-step reaction procedure. In order to investigate the relationship between fluorene structure and material properties, DGEBF and a commonly used diglycidyl ether of bisphenol A (DGEBA) were cured with 4,4-diaminodiphenyl methane (DDM) and 4,4-(9-fluorenylidene)-dianiline (FDA). The curing kinetics, thermal properties and decomposition kinetics of these four systems (DGEBA/DDM, DGEBF/DDM, DGEBA/FDA, and DGEBF/FDA) were studied in detail. The curing reactivity of fluorene epoxy resins was lower, but the thermal stability was higher than bisphenol A resins. The onset decomposition temperature of cured epoxy resins was not significantly affected by fluorene structure, but the char yield and Tg value were increased with that of fluorene content. Our results indicated that the addition of fluorene structure to epoxy resin is an effective method to improve the thermal properties of resins, but excess fluorene ring in the chain backbone can depress the curing efficiency of the resin.  相似文献   

8.
In this work, the latent thermal cationic initiators triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl‐2‐methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized and characterized with IR, 1H NMR, and P NMR spectroscopy. The thermal and mechanical properties of difunctional epoxy [diglycidyl ether of bisphenol A (DGEBA)] resins cured by 1 phr of either TBPH or BMPH were investigated. The DGEBA/TBPH system showed a higher curing temperature and a higher critical stress intensity factor than the epoxy/BMPH system. This could be interpreted in terms of the slow thermal diffusion rate and bulk structure of the four phenyl groups in TBPH. However, the decomposition activation energy derived from the Coats–Redfern method was lower for epoxy/TBPH. This result was probably due to the fact that a broken short‐chain structure was developed by the steric hindrance of TBPH in the difunctional epoxy resin. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2393–2403, 2003  相似文献   

9.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

10.
The flame‐retarded epoxy resin with improved thermal properties based on environmentally friendly flame retardants is vital for industrial application. Hereby, a novel reactive‐type halogen‐free flame retardant, 10‐(3‐(4‐hydroxy phenyl)‐3,4‐dihydro‐2H‐benzo[e] [1,3] oxazin‐4‐yl)‐5H‐phenophosphazinine 10‐oxide (DHA‐B) was synthesized via a two‐step reaction route. Its structure was characterized using 1H, 13C, and 31P NMR and HRMS spectra. For 4,4′‐diaminodipheny ethane (DDM) and diglycidyl ether of bisphenol A (DGEBA)‐cured systems, the epoxy resin with only 2 wt% loading of DHA‐B passed V‐0 rating of UL‐94 test. Significantly, its glass transition temperature (Tg) and initial decomposition temperature (T5%) were as high as 169.6°C and 359.6°C, respectively, which were even higher than those of the corresponding original epoxy resin. Besides, DHA‐B decreased the combustion intensity during combustion. The analysis of residues after combustion suggested that DHA‐B played an important role in the condensed phase.  相似文献   

11.
A novel fluorinated epoxy resin, 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane (BGTF), was synthesized through a four-step procedure, which was then cured with hexahydro-4-methylphthalic anhydride (HMPA) and 4,4′-diaminodiphenyl-methane (DDM). As comparison, a commercial available epoxy resin, bisphenol A diglycidyl ether (BADGE), cured with the same curing agents was also investigated. We found that the BGTF gave the exothermic starting temperature lower than BADGE no mater what kind of curing agents applied, implying the reactivity of the former is higher than the latter. The fully cured fluorinated BGTF epoxy resins have good thermal stability with glass transition temperature of 170-175 °C and thermal decomposition temperature at 5% weight loss of 370-382 °C in nitrogen. The fluorinated BGTF epoxy resins also showed the mechanical properties as good as the commercial BADGE epoxy resins. The cured BGTF epoxy resins exhibited improved dielectric properties as compared with the BADGE epoxy resins with the dielectric constants and the dissipation factors lower than 3.3 and dissipation 2.8 × 10−3, respectively, which is related to the low polarizability of the C-F bond and the large free volume of CF3 groups in the polymer. The BGTF epoxy resins also gave low water absorption because of the existence of hydrophobic fluorine atom.  相似文献   

12.
The synthesis and polymerization of seven epoxy polymer precursors which contained the siloxane linkage in varying structural arrangements was carried out. The polymers prepared from such precursors have utility as embedding compounds for electrical circuits. Polymerization of these epoxy intermediates with siloxane-containing diamines resulted in solid, thermosetting materials for which dielectric data were obtained. Dielectric constants of 3.1 were measured at 1 keps for polymers prepared by polymerization of 1,9-bis[p-(2,3-epoxypropyl)phenyl]decamethylpentasiloxane with 1,3-bis(p-am-inophenoxy)tetramethyldisiloxane, whereas polymers derived from 1,4-bis{[p-(2,3-epoxypropyl)phenyldimethylsiloxy]dimethylsilyl}benzene and the same diamine were characterized by slightly higher dielectric constants and a high degree of toughness, being nonbrittle at ?50°C.  相似文献   

13.
A diglycidylether sulfone monomer (sulfone type epoxy monomer, SEP) was prepared from bis(4-hydroxyphenyl) sulfone (SDOL) and epichlorohydrin without any NaOH or KOH as basic catalyst. FT-IR, 1H NMR, 13C NMR and mass spectroscopic instruments were utilized to determine the structure of the SEP monomer. The cured SEP epoxy material exhibited not only a higher Tg (163.81 °C) but also a higher Tg than pristine DGEBA (from 111.25 °C to 139.17 °C) when the SEP monomer moiety had been introduced into the DGEBA system. The thermal stability of cured epoxy herein was investigated by thermogravimetric analysis (TGA). The results demonstrated that the sulfone group of the cured SEP material decomposed at lower temperatures and formed thermally stable sulfate compounds, improving char yield and enhancing resistance against thermal oxidation. Additionally, the IPDT and char yield of the cured SEP epoxy (IPDT = 1455.75, char yield = 39.67%) exceeded those of conventional DGEBA epoxy (IPDT = 667.27, char yield = 16.25%).  相似文献   

14.
By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found that the sonic velocity of the blends decreased as thetemperature increased, but attenuation coefficient increased and possessed a peak value. Largervelocity and smaller attenuation coefficient(α)can be obtained from perfect crosslinking networkstructures of pure DGEBA cured with phthalic anhydride(PA). As for cured DGEBA/PEO blendsystems,sonic velocity decreased as a function of PEO concentration,but attenuation coefficient(α) increased.  相似文献   

15.
To investigate the effect of catalysts on the thermal, rheological, and mechanical properties of an epoxy system, a resin based on diglycidyl ether of bisphenol‐A (DGEBA) was cured by two cationic latent thermal catalysts, N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH). Differential scanning calorimetry was used for the thermal characterization of the epoxy systems. Near‐infrared spectroscopy was employed to examine the cure reaction between the DGEBA and the latent thermal catalysts used. The rheological properties of the blend systems were investigated under an isothermal condition with a rheometer. To characterize the mechanical properties of the systems, flexure, fracture toughness (KIC), and impact tests were performed. The phase morphology was studied with scanning electron microscopy of the fractured surfaces of mechanical test samples. The conversion and cure activation energy of the DGEBA/BQH system were higher than those of the DGEBA/BPH system. The crosslinking activation energy showed a result similar to that obtained from the cure kinetics of the blend systems. The flexure strength, KIC, and impact properties of the DGEBA/BQH system were also superior to those of the DGEBA/BPH system. This was a result of the substituted benzene group of the BQH catalyst, which increased the crosslink density and structural stability of the epoxy system studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 187–195, 2001  相似文献   

16.
Siliconized epoxy matrix resin was developed by reacting diglycidyl ethers of bisphenol A (DGEBA) type epoxy resin with hydroxyl terminated polydimethylsiloxane (silicone) modifier, using γ-aminopropyltriethoxysilane crosslinker and dibutyltindilaurate catalyst. The siliconized epoxy resin was cured with 4, 4-diaminodiphenylmethane (DDM), 1,6-hexanediamine (HDA), and bis (4-aminophenyl) phenylphosphate (BAPP). The BAPP cured epoxy and siliconized epoxy resins exhibit better flame-retardant behaviour than DDM and HDA cured resins. The thermal stability and flame-retardant property of the cured epoxy resins were studied by thermal gravimetric analysis (TGA) and limiting oxygen index (LOI). The glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC) and the surface morphology was studied by scanning electron microscopy (SEM). The heat deflection temperature (HDT) and moisture absorption studies were carried out as per standard testing procedure. The thermal stability and flame-retardant properties of the cured epoxy resins were improved by the incorporation of both silicone and phosphorus moieties. The synergistic effect of silicone and phosphorus enhanced the limiting oxygen index values, which was observed for siliconized epoxy resins cured with phosphorus containing diamine compound.  相似文献   

17.
A novel flame retardant additive hexa-(phosphaphenanthrene -hydroxyl-methyl-phenoxyl)-cyclotriphosphazene (HAP-DOPO) with phosphazene and phosphaphenanthrene double functional groups has been synthesized from hexa-chloro-cyclotriphosphazene, 4-hydroxy-benzaldehyde and 9,10-dihydro-9-oxa-10- phosphaphenanthrene 10-oxide(DOPO). The structure of HAP-DOPO was characterized by Fourier transformed infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR) and 31P nuclear magnetic resonance (31P NMR). The additive HAP-DOPO was blended into diglycidyl ether of bisphenol-A (DGEBA) to prepare flame retardant epoxy resins. The flame retardant properties and thermal properties of the epoxy resins cured by 4, 4′-Diamino-diphenyl sulfone (DDS) were investigated from the differential scanning calorimeter (DSC), the thermogravimetric analysis (TGA), UL94 test, the limiting oxygen index (LOI) test and Cone calorimeter. Compared to traditional DOPO-DGEBA and ODOPB-DGEBA thermosets, the HAP-DOPO/DGEBA thermosets have higher Tgs at the same UL94 V-0 flammability rating for their higher crosslinking density and have higher char yield and lower pk-HRR at same 1.2 wt.% phosphorus content which confirm that HAP-DOPO has higher flame retardant efficiency on thermosets. The scanning electron microscopy (SEM) results shows that HAP-DOPO in DGEBA/DDS system obviously accelerate formation of the sealing, stronger and phosphorus-rich char layer to improve flame retardant properties of matrix during combustion.  相似文献   

18.
In this report, a novel phosphorus/silicon‐containing reactive flame retardant, hexa(3‐triglycidyloxysilylpropyl)triphosphazene (HGPP), was synthesized and characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectra (1H, 31P, and 29Si), respectively. To prepare cured epoxy, HGPP had been co‐cured with diglycidyl ether of bisphenol‐A (DGEBA) via 4,4‐diaminodiphenylsulfone as a curing agent. The mechanical, thermal, and flame retardant properties of the cured epoxy were evaluated by dynamic mechanical analysis, thermogravimetric analysis, and limiting oxygen index (LOI). According to these results, it could be found that incorporation of HGPP in the cured epoxy system showed good thermal stability, high LOI values, and high char yield at high temperature. As moderate loading of HGPP in the epoxy system, its storage modulus and glass transition temperature were higher than those of neat DGEBA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The Diels-Alder adduct (±)-5 of furan to 1-cyanovinyl acetate was converted to (1RS,2RS,6RS,7SR,8SR,10RS)-10-{[(tert-butyl)dimethylsilyl]-oxy}-4-ethoxy (1) and -4-phenyl-3,9,11-trioxa-5-azatetracyclo[5.3.1.02,6.08,10]-undec-4-ene (2). These compounds reacted with TiCl4 to afford stable (1RS,2RS,6RS,7SR,8SR,9SR)-9-{[(tert-butyl)dimethylsilyl]oxy}-9-chloro-4-ethoxy-3,10-dioxa-5-azatricyclo[5.2.1.02,6]decan-8-ol (3) and (1RS,2RS,6RS,7SR,8SR,9SR)-9-{[(tert-butyl)dimethylsilyl]oxy}-9-chloro-4-phenyl-3,10-dioxa-5-azatricyclo[5.2.1.02,6]decan-8-ol (4), respectively.  相似文献   

20.
Two sets of sucrose-based epoxy monomers, namely, epoxy allyl sucroses (EAS), and epoxy crotyl sucroses (ECS), were prepared by epoxidation of octa-O-allyl and octa-O-crotyl sucroses (OAS and OCS, respectively). Synthetic and structural characterization studies showed that the new epoxy monomers were mixtures of structural isomers and diastereoisomers that contained varying numbers of epoxy groups per sucrose. EAS and ECS can be tailored to contain an average of one to eight epoxy groups per sucrose. Quantitative 13C-NMR spectrometry and titrimetry were used independently to confirm the average number of epoxy groups per sucrose. Sucrose-based epoxy monomers were cured with diethylenetriamine (DETA) in a differential scanning calorimeter (DSC), and their curing characteristics were compared with those of diglycidyl ether of bisphenol A (DGEBA) and diepoxycrotyl ether of bisphenol A (DECEBA). EAS and DGEBA cured at 100 to 125°C and exhibited a heat of cure of about 108.8 kJ per mol epoxy. ECS and DECEBA cured at 150 and 171°C, respectively, and exhibited a heat of cure of about 83.7 kJ per mol epoxy. Depending upon the degree of epoxidation (average number of epoxy groups per sucrose) and the concentration of DETA, glass transition temperatures (Tgs) of cured EAS varied from −17 to 72°C. DETA-cured ECS containing an average of 7.3 epoxy groups per sucrose (ECS-7.3) showed no DSC glass transition between −140 and 220°C when the ratio of amine (NH) to epoxy group was 1:1 and 1.5:1. Maximum Tgs obtained for DETA-cured DGEBA and DECEBA polymers were 134 and 106°C, respectively. DETA-cured bisphenol A-based epoxy polymers degraded at about 340°C, as observed by thermogravimetric analysis (TGA). DETA-cured sucrose-based epoxy polymers degraded at about 320°C. Sucrose-based epoxies cured with DETA were found to bind aluminum, glass, and steel. Comparative lap shear tests (ASTM D1002–94) showed that DETA-cured epoxy allyl sucroses with an average of 3.2 epoxy groups per sucrose (EAS-3.2) generated a flexible adhesive comparable in bond strength to DGEBA. However, DETA-cured ECS-7.3 outperformed the bonding characteristics of both DGEBA and EAS-3.2. All sucrose-based epoxy polymers were crosslinked and insoluble in water, N,N-dimethylformamide, tetrahydrofuran, acetone, and dichloromethane. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2397–2413, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号