首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new acrylic monomer 4‐propanoylphenyl acrylate (PPA) was synthesized and copolymerized with methyl methacrylate (MMA) in methyl ethyl ketone at 70±1°C using benzoyl peroxide as a free radical initiator. The copolymers were characterized by FT‐IR, 1H‐NMR and 13C‐NMR spectroscopic techniques. The compositions of the copolymers were determined by 1H‐NMR analysis. The reactivity ratios of the monomers were determined using Fineman‐Ross (r1=0.5535 and r2=1.5428), Kelen‐Tüdös (r1=0.5307 and r2=1.4482), and Ext. Kelen‐Tüdös (r1=0.5044 and r2=1.4614), as well as by a nonlinear error‐in‐variables model (EVM) method using a computer program, RREVM (r1=0.5314 and r2=1.4530). The solubility of the polymers was tested in various polar and non‐polar solvents. The elemental analysis was determined by a Perkin‐Elmer C‐H analyzer. The molecular weights (Mw and Mn) of the copolymers were determined by gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of MMA in the copolymers. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of MMA in the copolymers.  相似文献   

2.
N‐vinylimidazole (VIM), and phenacyl methacrylate (PAMA) copolymerized with different feed ratios using 1,4‐dioxane as a solvent and α,α'‐azobisisobutyronitrile (AIBN) as an initiator at 60°C. Structure and composition of copolymers for a wide range of monomer feed were determined by elemental analysis (content of N for VIM‐units) and by Fourier transform infrared spectroscopy through recorded analytical absorption bands for VIM (670 cm?1 for C‐N of imidazole ring) and PAMA (1730 cm?1 for C?O of ester group) units, respectively. Monomer reactivity ratios for VIM (M1)‐PAMA (M2) pair were determined by the application of conventional linearization methods such as Fineman‐Ross (F‐R) and Kelen‐Tüdös (KT) and a nonlinear error invariable model method using a computer program RREVM. The molecular weights (w and n) and polydispersity indices of the polymers were determined using gel permeation chromatography (GPC). Thermal behaviors of copolymers with various compositions were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Also, the apparent thermal decomposition activation energies (ΔEd) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance. The antibacterial and antifungal effects of polymers were also tested on various bacteria, fungi and yeast.  相似文献   

3.

The copolymerization of 2‐(3‐(6‐tetralino)‐3‐methyl‐1‐cyclobutyl)‐2‐hydroxyethyl methacrylate (TCHEMA), monomer with acrylonitrile and 4‐vinylpyridine were carried out in 1,4‐dioxane solution at 65°C using AIBN as an initiator. The copolymers were characterized by FTIR, 1H‐NMR, and 13C‐NMR spectroscopic techniques. Thermal properties of the polymers were also studied by thermogravimetric analysis and differential scanning calorimetry. The copolymer compositions were determined by elemental analysis. The monomer reactivity ratios were calculated by the Fineman‐Ross and Kelen‐Tüdös method. Also, the apparent thermal decomposition activation energies were calculated by the Ozawa method with a Shimadzu TGA 50 thermogravimetric analysis thermobalance.  相似文献   

4.
《合成通讯》2013,43(9):1653-1662
Abstract

Synthesis, structure, and reactivity of chiral N‐chlorosulfonyloxazolidin‐2‐ones are described. Their synthesis were easily carried out starting from the corresponding chiral oxazolidin‐2‐ones and sulfuryl chloride to afford the title compounds 1 in high yields.  相似文献   

5.
Abstract

4‐(3′,4′‐Dimethoxycinnamoyl)phenyl acrylate (DMCPA) containing pendant chalcone moiety was copolymerized with methyl methacrylate (MMA) by radical polymerization in ethyl methyl ketone at 70°C under a nitrogen atmosphere using benzoyl peroxide (BPO) as a free radical initiator. The prepared polymer was characterized by UV, FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The composition of the copolymer was determined using 1H‐NMR analysis. The monomer reactivity ratios of copolymerization were determined using conventional linearization methods such as Fineman–Ross (r 1 = 0.26 and r 2 = 0.61), Kelen–Tudos (r 1 = 0.26 and r 2 = 0.61), and Ext. Kelen–Tudos (r 1 = 0.23 and r 2 = 0.59), and a non‐linear error‐in‐variables model (EVM) method using the computer program RREVM (r 1 = 0.2541 and r 2 = 0.6094). The molecular weights (M w and M n) of the copolymers were determined by gel permeation chromatography. Thermogravimetric analysis of the polymers in air reveals that the stability of the copolymers decreases with an increase in the mole fraction of MMA in the copolymers. The solubility of the polymers was tested in various polar and non‐polar solvents. The glass transition temperature of the copolymers was determined as a function of copolymer composition. The copolymers were sensitive to UV light and became crosslinked after irradiation with 254 nm light.  相似文献   

6.
A homopolymer of methyl methacrylate (MMA) and its copolymer with styrene at different compositions were synthesized and characterized. Viscosity measurements of the synthesized homopolymer and the copolymers in toluene solutions were performed at 313 K. Different equations were used to calculate the intrinsic viscosity, viscometric constants values, and molecular weight of the synthesized polymers. The values of intrinsic viscosity and viscosity average molecular weight obtained by the two methods (single point determination and graphical extrapolation) were compared in order to verify the validity of the single point determination for the polymers. Viscometric properties derived included the specific viscosity (it determines the contribution of the solute to the viscosity of the solution), the reduced viscosity (that provides a measure of the polymer capacity for increasing the solution viscosity), and the intrinsic viscosity.  相似文献   

7.
In this study, N‐vinylpyrrolidone (VP)/methacrylic acid (MAA) copolymers have been prepared at three different mole percents, the methacrylic acid composition being around 5, 10, 15%. MAA and VP monomer mixtures have been irradiated in 60Co‐γ source at different irradiation doses and percent conversions have been determined gravimetrically. ~80% conversion of monomers into hydrogels were performed at 3.4 kGy irradiation dose. These hydrogels were swollen in distilled water at pH 4.0, 7.0, and 9.0. P(VP/MAA) hydrogel which contains 5% methacrylic acid showed the maximum % swelling at pH 9.0 in water. Diffusion of water was found to be of non‐Fickian character. Diffusion coefficients of water in P(VP/MAA) hydrogels were calculated. Initial swelling rates of P(VP/MAA) hydrogels increased with increasing pH and MAA content in hydrogels. Swelling kinetics of P(VP/MAA) hydrogels was found to be of second order. Thermal behavior of PMAA, PVP and P(VP/MAA) hydrogel were investigated by thermal analysis. P(VP/MAA) hydrogel gained new thermal properties and the temperature for maximum weight loss and temperature for half‐life of P(VP/MAA) hydrogel were determined.  相似文献   

8.

We report the monomer reactivity ratios for copolymers of ethyl methacrylate (EMA) and a reactive monomer, 2‐[(5‐methylisoxazol‐3‐yl)amino]‐2‐oxo‐ethyl methacrylate (IAOEMA), using the Fineman‐Ross, Kelen‐Tüdös, and a nonlinear error invariable model method using a computer program RREVM. Copolymers were obtained by radical polymerization initiated by α,α'‐azobisisobutyronitrile in 1,4‐dioxane solution and were analyzed by FTIR, 1H‐NMR, and gel permeation chromatography. Elemental analysis was used to determine the molar fractions of EMA and IAOEMA in the copolymers. The reactivity ratios indicated a tendency toward ideal copolymerization. The polydispersity indices of the polymers determined using gel permeation chromatography suggest a strong tendency for chain termination by disproportionation. Thermal behaviors of copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. It was observed that glass transition temperature of copolymers increased with increasing of IAOEMA content in copolymers. Also, the apparent thermal decomposition activation energies (ΔEd) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance. The homo‐ and copolymers were tested for their antimicrobial properties against selected microorganisms. All the products show moderate activity against different strains of bacteria, fungi and yeast.  相似文献   

9.
Chitosan is a natural based polymer obtained by alkaline deacetylation of chitin, exhibiting excellent properties such as non‐toxicity, biocompatibility and biodegradability. N‐Methylenephenyl phosphonic chitosan (NMPPC) is synthesized from chitosan by reacting with phenyl phosphonic acid using formaldehyde. The NMPPC was characterized by FTIR, 31P‐NMR, X‐ray diffraction, scanning electron microscopy, thermogravimeteric analysis and solubility studies. A significant decrease of molecular weight was observed in the NMPPC. The TGA studies suggested that NMPPC has less thermal stability than chitosan. The X‐ray diffraction analysis showed that NMPPC was amorphous in nature. The solubility property of the polymer was improved after the incorporation of a phenyl phosphonic group.  相似文献   

10.
The free-radical copolymerization of methyl methacrylate and methacrylophenone (MAP) initiated by azobisisobutyroni-trile at 60°C has been studied in ethylbenzene solution and in bulk. The process is characterized by a competitive Diels-Alder condensation of methacrylophenone and by a very low reactivity of methacrylophenone-terminated macroradicals in propagation reactions. The experimental composition data are consistent with a terminal unit model: rA = 1.77 ± 0.02, rB = 0.110 ± 0.006. Copolymerization with depropagation of methacrylophenone-terminated growing chains and copolymerization affected by penultimate effects have been tested as optimized possible models to take into account the inability of MAP to undergo homopolymerization.  相似文献   

11.
N‐doped TiO2 nanotubes with high photocatalytic activity were prepared by the combination of sol‐gel process with hydrothermal treatment. The prepared materials are characterized with transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), x‐ray diffraction (XRD), x‐ray photoelectron spectra (XPS), and UV‐vis spectra. Photocatalytic performance of the N‐doped TiO2 nanotubes is studied by testing the degradation rate of methyl orange under UV irradiation. Obtained results indicate that N‐doped TiO2 nanotubes have high catalytic activity for photocatalytic oxidation.  相似文献   

12.
Abstract

Copolymerization of α-methylstyrene and N-cyclohexylacrylamide was carried out in toluene at 60 ± 1°C using azobisisobutyronitrile as the free-radical initiator. The total concentration of the comonomers was 1.5 mol·L?1 in the solvent. The copolymers were characterized by 1H-NMR and 13C-NMR spectroscopy, and the copolymer compositions were determined primarily from the 1H-NMR spectra. The reactivity ratios were found to be r 1 = 0.08 ± 0.01 and r 2 = 2.45 ± 0.03 by the Fineman-Ross method, and r 1 = 0.06 ± 0.01 and r 2 = 2.43 ± 0.08 by the Kelen-Tüdös method. Mean sequence lengths in the copolymer were estimated from r 1 and r 2 values.  相似文献   

13.
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.  相似文献   

14.
The new Schiff base oligomer (oligo‐ortho‐chloroazomethinephenol) was synthesized by the condensation of ortho‐chloroaniline with oligosalicylaldehyde (OSA). Oligomer‐metal complexes of oligo‐ortho‐chloroazomethinephenol (OKAP) with Cu(II), Zn(II) and Co(II) were synthesized. The properties of OKAP and oligomer‐metal complexes were studied by elemental, UV‐Vis, 1H‐NMR, FT‐IR, magnetic susceptibility analyses. The number average molecular weight and mass average molecular weight OKAP were found to be 1494 g · mol?1 and 5418 g · mol?1, respectively. Elemental analyses of oligomer‐metal complexes suggest that the ratio of metal to oligomer is 1∶2. The results indicate that the OKAP coordinate through azomethine nitrogen and phenolic oxygen to the metal ions. Antimicrobial activity of OKAP was tested against S. cerevisiae, B. subtilis, E. coli, K. pneumoniae, M. luteus and S. aureus. The thermal stabilities of the OKAP and oligomer‐metal complexes were compared by thermogravimetric (TG) analyses. According to TG, OKAP, and oligomer‐metal complexes were stable against temperature and thermooxidative decomposition. The weight losses of OKAP and oligomer‐metal complexes were found to be at 400 and 800°C at 20.2 and 50.0 (OKAP), 17.1 and 41.1 (Cu(II)), 13.4 and 38.5 (Zn(II)), 18.3 and 68.2 (Co(II)), %, respectively. Based on half degradation temperature (T50%) parameters, Cu(II) and Zn(II) complexes were more resistant than the OKAP and Co(II) complex.  相似文献   

15.
Chitosan-graft-poly(lactic acid)(CS-g-PLA) copolymer was synthesized through emulsion self-assembly in a water-in-oil(W/O) microemulsion. The water phase was composed of CS aqueous solution, while the oil phase was made up of PLA in chloroform. The W/O microemulsion was fabricated in the presence of surfactant span-80 and the self-assembly was performed between PLA and CS under the effect of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride(EDC·HCl). FTIR and1H-NMR analysis indicated PLA was grafted onto the backbone of CS via the reaction between the carboxyl groups in PLA and the amino groups in CS.1H-NMR characterization further revealed the grafting content of PLA was 16%. The obtained CS-g-PLA could self-assemble to form micelles, their size distributed in the range of 125 375 nm with average diameter of 142 nm. The present design integrates the favorable biological properties of CS and the excellent mechanical properties of PLA, which makes CS-g-PLA copolymer a promising candidate as a carrier for targeted bioactive molecules delivery.  相似文献   

16.
A biodegradable ABBA block copolymer was synthesized via the ring-opening co-polymerization of ε-caprolactone(CL, B) and glycolide(A) by means of step polymerization in the presence of ethylene glycol as an initiator and stannous octanoate as a catalyst at 110 ℃ for 48 h. The molecular length of the PCL pre-polymer(BB) could be adjusted by controlling the molar ratio of the ethylene glycol initiator to ε-caprolactone monomer. The structure and the composition of the block copolymer were determined by the weight ratio of the monomer glycolide(A) to PCL pre-polymer(BB). The block copolymers were characterized by 1H NMR, GPC, DSC and X-ray. The results confirm the successful synthesis of an ABBA block copolymer.  相似文献   

17.
A series of phosphines featuring a persistent radical were synthesized in two steps by condensation of dialkyl-/diarylchlorophosphines with stable cyclic (alkyl)(amino)carbenes (cAACs) followed by one-electron reduction of the corresponding cationic intermediates. Structural, spectroscopic, and computational data indicate that the spin density in these phosphines is mainly localized on the original carbene carbon from the cAAC fragment; thus, it remains in the α-position with respect to the central phosphorus atom. The potential of these α-radical phosphines to serve as spin-labeled ligands is demonstrated through the preparation of several AuI derivatives, which were also structurally characterized by single-crystal X-ray diffraction.  相似文献   

18.
Biocompatible magneto‐vesicles (MVs) with multiple magnetic nanoparticles encapsulated inside were synthesized by the hydration‐sonication method in the presence of magnetic fluid with a mixture of two types of phospholipid molecules. The dimension and the size distribution of these MVs are in the same order as the vesicles synthesized in the similar method, indicating that the encapsulation does not change vesicles' properties dramatically. Releasing fluorophore molecules—carboxylfluorescein (CF) from MVs demonstrates that MVs with DOPE/DDAB layers can be a new type of magnetic carrier for biomedical applications.  相似文献   

19.
A biodegradable ABBA block copolymer was synthesized via the ring-opening co-polymerization of ε-Scaprolactone (CL, B) and glycolide (A) by means of step polymerization in the presence of ethylene glycol as an initiator and stannous octanoate as a catalyst at 110 ℃ for 48 h. The molecular length of the PCL prepolymer(BB) could be adjusted by controlling the molar ratio of the ethylene glycol initiator to ε-caprolactone monomer. The structure and the composition of the block copolymer were determined by the weight ratio of the monomer glycolide (A) to PCL pre-polymer(BB). The block copolymers were characterized by ^1H NMR, GPC, DSC and X-ray. The results confirm the successful synthesis of an ABBA block copolymer.  相似文献   

20.
Novel calix[4]azacrown derivatives from the reaction between calix[4]amidocrown and the different N‐(4‐bromoacetamidephthalimido)alkanes derivatives, which may be useful intemediate compounds of pseudorotaxane, have been synthesized and structurally characterized by IR, 1H NMR, 13C NMR, MS, and elemental analyses. From their analysis data, it was found that compounds 6ad adopted a cone conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号