首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellulose acetate (CA) microfiltration membranes were prepared by two‐stage vapor‐induced phase separation (VIPS) and immersion precipitation. To improve the hydrophilicity and permeability of the membranes at low operating pressures, plasma‐treated natural zeolite was incorporated into the membranes. A response surface methodology based on the three‐level central composite design (CCD) was used to model and optimize the casting solution composition of the membranes with the aim of maximizing membranes permeability. Three independent variables for CCD optimization were concentration of CA, polyvinylpyrrolidone (PVP) pore former, and plasma‐treated zeolite additive. The results showed that a second‐order polynomial model could properly predict the response (pure water flux) at any input variable values with a satisfying determination coefficient (R2) of 0.954. Also, analysis of variance (ANOVA) confirmed the adequacy of the obtained model. The permeability of the prepared membranes increased by increasing zeolite loading from 0.10 to 0.50 wt%, which was related to the membranes morphology and porosity and confirmed by scanning electron microscopy (SEM) images. Pure water flux of the membranes decreased by increasing CA concentration while an optimum PVP amount was required to reach the maximum flux. The result of the bubble point analysis well matched with surface SEM images of the membranes and permeability trend predicted by CCD model. Also, the prepared CA membranes with different compositions showed no toxicity for mouse L929 fibroblast, which indicated their nontoxic and biocompatible nature.  相似文献   

2.
Polyvinylidene fluoride (PVDF) membranes were prepared via the phase inversion method from casting solutions containing PVDF, dimethylformamide (DMF), and polyvinylpyrrolidone (PVP) as pore former. PVP was used in the casting solution in a range of 0–5 wt % and extracted. The effect on membranes of using PVP in the casting process was analyzed by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, viscosity, and water permeability techniques. With an increase of PVP from 0 to 5 wt %, the PVDF casting solution viscosities increased from 858 to 1148 cP; the resulting PVDF membrane thickness increased; and the crystallinity of PVDF membranes decreased from 40.0 to 33.3%, which indicates that the addition of PVP inhibits the degree of crystallization in the PVDF membranes. SEM results revealed the shape and size of macropores in the membranes; these macropores changed after PVP addition to the casting solutions. The impact of structural changes on free-volume properties was evaluated using positron annihilation lifetime spectroscopy (PALS) studies. PALS analysis indicated no effect on the average radius (~3.4 Å) of membrane free-volume holes from the addition of PVP to the casting solution. However, the percentage of o-Ps pick-off annihilation intensity, I3, increased from 1.7 to 5.1% with increased PVP content. Further, increasing the PVP content from 0.5 to 5% resulted in an increased final pure water permeability flux. For instance, the 210 min flux for a 14% PVDF + 0.5% PVP membrane was found to be 3.3 times greater than a control membrane having the same PVDF concentration. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 589–598  相似文献   

3.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The relationship among the presence of nonsolvent additives, the rheological behavior of spinning solutions and properties of hollow fiber membranes was studied. The additives tested were water, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), and the base mixture was polyethersulfone/N-methyl-2-pyrrolidone (PES–NMP). In addition the effect of combining water and PVP or PEG was also studied. Membranes were prepared using a spinneret having two concentric orifices. The internal coagulant used as well as the nonsolvent from the coagulation bath were both water at 28°C and 30°C, respectively. Rheological properties of polymer solutions were evaluated using a rheometer Haake RV 20. Changes on composition of spin-solutions were also evaluated in terms of membrane water permeability, solute rejection and membrane structure observed using scanning electron microscopy (SEM). Experimental results from this work showed that spinning solutions containing any of the three additives behave as Newtonian fluids in the range of shearing rates tested. The addition of water, PVP or PEG to the base PES–NMP solution increased its viscosity and this effect was independent of the type of additive used. A direct relation between viscosity of casting solutions and membrane thickness was found. However, rheological properties (viscosity and normal stress difference) could not be used to explain differences on membrane water flux (MWF) when using different additives at the same concentration. The addition of any of the three additives generally increased MWF. The extent of this increment seemed to be more related to changes on membrane porosity than changes on pore sizes induced by the nature and concentration of the additive used.  相似文献   

5.
Novel poly(aryl ether sulfone ketone)s(PAESK) were synthesized from bisphenol A(BPA),9,9′-bis(4-hydroxyphenyl)fluorene(BHPF),4,4′-dichlorodiphenylsulfone(DCS) and 4,4′-difluorobenzophenone(DFB) via nucleophilic substitution polymerization,which were subsequently used to fabricate ultrafiltration membrane by phase-inversion method for high temperature condensed water treatment.The obtained high molecular weight co-polymers with fluorene group with good solubility and good thermal stability,can be easily cast into flexible,white and non-transparent flat films.The influence of molar ratio of BPA and BHPF on the properties of the prepared co-polymers and membranes was investigated in detail.SEM study of the morphology of the membranes indicated that the prepared membranes possessed homogeneous pores on the top surface and were sponge-like or finger-like in cross-section.Pure water flux of the membranes increased from 71.87 L·m~(-2)·h~(-1) to 247.65 L·m~(-2)·h~(-1),while the retention of BSA decreased slightly,and the water contact angle decreased from 82.1° to 55.6° with the PVP concentration from 0 wt% to 10 wt%.With increasing concentration of PVP,the mechanical properties of membranes decreased,while the thermal stability increased.The permeate flux measurement showed that the PAESK membrane had the potential for high temperature condensed water treatment.  相似文献   

6.
《先进技术聚合物》2018,29(9):2420-2439
Polyethersulfone (PES) microfiltration membranes were fabricated by a combined vapor‐induced phase separation and wet phase separation method. The effect of different non‐solvent additives in casting solution, ie, acetone, diethylene glycol, and triethylene glycol (TEG) was investigated on the membrane morphology and performance. Scanning electron microscopy images showed that the membrane containing TEG additive had a skinless symmetric structure with well interconnected pores. The permeability of the PES/PVP/TEG membranes increased by decreasing PES and TEG and increasing PVP concentration. Bacteria removal performance of the prepared membranes was investigated by the filtration of E. coli suspension. The membrane made from casting solution containing 15 wt.% PES, 16 wt.% PVP, and 20wt.% TEG showed a pure water flux of ~ 5370 L/m2 h at low transmembrane pressure of 10 psi and 100% bacteria removal efficiency. The results of in vitro cytotoxicity test and cell viability assay showed non‐toxic nature of the prepared membranes.  相似文献   

7.
陈文清 《高分子科学》2010,28(4):527-535
<正>Polyvinylidene fluoride(PVDF) hollow fiber membranes prepared from spinning solutions with different polyvinyl pyrrolidone(PVP) contents(1%and 5%) at different extrusion rates were obtained by wet/dry phase process keeping all other spinning parameters constant.In spinning these PVDF hollow fibers,dimethylacetamide(DMAc) and PVP were used as a solvent and an additive,respectively.Water was used as the inner coagulant.Dimethylformamide(DMF) and water(30/70) were used as the external coagulant.The performances of membranes were characterized in terms of water flux,solute rejection for the wet membranes.The structure and morphology of PVDF hollow fiber were examined by BET adsorption,dry/wet weight method and scanning electron microscopy(SEM).It is found that the increase in PVP content and extrusion rate of spinning solution can result in the increase of water flux and decrease of solute rejection.The improvements of interconnected porous structure and pore size are induced by shear-thinning behavior of spinning solution at high extrusion rates,which could result in the increase of water flux of hollow fiber membranes.The increase of extrusion rate also leads to the increase of membrane thickness due to the recovery effect of elastic property of polymer chains.  相似文献   

8.
Novel hierarchical porous carbon membranes were fabricated through a simple carbonization procedure of well-defined blending polymer membrane precursors containing the source of carbon polyacrylonitrile (PAN) and an additive of polyvinylpyrrolidone (PVP), which was prepared using phase inversion method. The as-fabricated materials were further used as the active electrode materials for supercapacitors. The effects of PVP concentration in the casting solution on structure feature and electrochemical capacitive performance of the as-prepared carbon membranes were also studied in detail. As the electrode material for supercapacitor, a high specific capacitance of 278.0 F/g could be attained at a current of 5 mA/cm2 and about 92.90% capacity retention could be maintained after 2000 charge/discharge cycles in 2 mol/L KOH solution with a PVP concentration of 0.3 wt% in the casting solution. The facile hierarchical pore structure preparation method and the good electrochemical capacitive performance make the prepared carbon membrane particularly promising for use in supercapacitor.  相似文献   

9.
Novel hierarchical porous carbon membranes were fabricated through a simple carbonization procedure of well-defined blending polymer membrane precursors containing the source of carbon polyacrylonitrile (PAN) and an additive of polyvinylpyrrolidone (PVP), which was prepared using phase inversion method. The as-fabricated materials were further used as the active electrode materials for supercapacitors. The effects of PVP concentration in the casting solution on structure feature and electrochemical capacitive performance of the as-prepared carbon membranes were also studied in detail. As the electrode material for supercapacitor, a high specific capacitance of 278.0 F/g could be attained at a current of 5 mA/cm2 and about 92.90% capacity retention could be maintained after 2000 charge/discharge cycles in 2 mol/L KOH solution with a PVP concentration of 0.3 wt% in the casting solution. The facile hierarchical pore structure preparation method and the good electrochemical capacitive performance make the prepared carbon membrane particularly promising for use in supercapacitor.  相似文献   

10.
Hyperbranched polyester-grafted poly(vinylidene fluoride) (HBPE-g-PVDF) was synthesized and used as additive in preparation of PVDF blend membranes. HBPE-g-PVDF copolymer was characterized with FTIR and TGA techniques. The prepared membranes were also characterized with SEM, AFM and contact angle measurement. The performance of prepared membranes as nanofiltration membrane was studied by pure water flux (PWF), salt rejection, dynamic and static fouling tests. The results showed that hydrophilicity of prepared membranes greatly increased after blending, and their pore size and pore size distribution and so PWF of blend membranes increased.  相似文献   

11.
傅婧  乔锦丽  马建新 《物理化学学报》2010,26(11):2975-2981
碱性固体电解质膜的稳定性是影响其在电化学领域应用的一个重要因素.本文在前期研究工作的基础上,通过直接共混和化学交联修饰制备出了聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)碱性聚合物电解质膜.采用傅里叶变换红外(FTIR)光谱、热重分析(TGA)、扫描电镜(SEM)和交流阻抗等方法详细考察了复合膜的分子结构、热稳定性、化学稳定性、氧化稳定性和尺寸稳定性.红外光谱结果表明,PVP成功地混入聚合物基体中,在1672cm-1处表现出来自于PVP第I带C襒O的强吸收峰.TGA结果表明,提高掺杂的KOH溶液浓度对PVA/PVP碱性膜的热稳定性没有明显影响.SEM分析结果表明,复合膜经高温、高浓度碱(80℃,10mol·L-1)处理后,其断面结构仍致密均匀,未出现类似小孔等膜降解情况,此时膜电导率(1.58×10-3S·cm-1)相比室温相同碱液时提高91.5%,表明PVA/PVP膜具有很好的耐碱化学稳定性.同时,PVA/PVP碱性膜表现出良好的抗氧化性,在60℃的3%和10%H2O2溶液中处理均没有观察到明显的质量损失,150h后仍能保持原膜质量的89%和85%.此外,由于膜内形成致密的内互交联网络结构,复合膜在水中800h之后也表现出很好的同向性和电导率稳定性.  相似文献   

12.
Positively charged membrane with various charged groups were prepared by in situ amination and phase inversion in which the amine-organic solution and bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) was cast and immerged into an ethanol coagulation bath. The separation performance and morphologies were examined to investigate the effect of hydrophilicity of charged groups on the selective properties and the structure formation of the membranes. Positively charged groups introduced in the membranes were trimethylbenzylammonium, triethylbenzylammonium, tri-n-propylbenzylammonium and tri-n-butylbenzylammonium, in order of increasing hydrophobicity. Pure water flux and rejection to gelatin of the membranes at three pH values changed remarkably with increasing chain length of alkyl groups. The tendency of the change was mainly explained by coagulation value of the casting solution. The streaming potential and ion exchange capacity of the membranes were determined and the results showed that the membranes were all positively charged. Furthermore, water content, pore size distribution and SEM images of the membranes were examined as well.  相似文献   

13.
Polyethersulfone membranes were prepared from quaternary systems containing N,N-dimethylacetamide (DMAc) as solvent, polyvinylpyrrolidone (PVP) as constant additive and acetic acid, acetone and water as variable additives. Phase inversion via immersion precipitation was employed for manufacturing of membranes. The prepared films were immersed in the mixture of pure water and 2-propanol (30/70 vol%) as the non-solvent. Acetic acid caused an increment in the flux at high polymer concentration (16 wt%) and a decline in the flux at low polymer concentrations (10 wt% and 13 wt%). Acetone and water as the solvent in the casting solution declined the flux at any polymer concentration tested. The morphology and performance of the prepared membranes were investigated by scanning electron microscopy and separation experiments using milk as the feed.  相似文献   

14.
Min Shang  Baoli Shi 《Chemical Papers》2018,72(12):3159-3167
Cellulose acetate (CA) forward osmosis (FO) membranes were prepared via a phase inversion process. CA was used as membrane material for FO. Acetone and 1,4-dioxane were employed as solvent. Polyvinylpyrrolidone (PVP), maleic acid, and methanol were applied as additives. An orthogonal experiment was performed to optimize the ratio of every component in the casting solution. The membrane with best performance was selected to concentrate an anthocyanin solution. Saturated sucrose solution (about 60°Brix) was fit for using as draw solution in the concentration experiment. Water flux, porosity, and rejection rate were measured to evaluate the membrane properties. Reverse water rinsing was used in cleaning membrane that was fouled by anthocyanin solution. Results showed that under membrane thickness of 100 μm, coagulation temperature at room temperature, and evaporation time of 30 s, the optimum components in casting solution were 13% CA, 45% 1,4-dioxane, 31% acetone, 2% maleic acid, 3% PVP, and 6% methanol. In the concentration experiment, the prepared FO membrane showed water flux of 2.04 L m?2 h?1 and rejection rate of 98.61%. In the membrane cleaning experiment, the water flux of the FO membrane recovered 87.51% after rinsing for 1 h. The prepared membranes and previously published membranes were compared which showed the prepared membrane could significantly improve the rejection rate for anthocyanin solution.  相似文献   

15.
采用热致相分离法,以己内酰胺为溶剂,制备得到了聚苯硫醚微孔膜并对薄膜性能表征.聚苯硫醚-己内酰胺体系制膜的优点之一是溶剂己内酰胺是水溶性的,可以采用纯水作为后处理的萃取剂.选择了合适的浓度,利用压制成型法制备聚苯硫醚平板膜;研究了体系冷却时的相行为,并考察了降温速率、聚合物浓度等因素对微孔形态与薄膜性能的影响.研究表明,聚苯硫醚-己内酰胺体系以固液分相为主,萃取后形成球晶状的微孔结构.降温速率对薄膜的微孔形态、孔径以及连通性有重要影响;当体系以较低降温速率冷却时,多孔形态为枝叶状,形成了更多的开孔结构并获得了更大的孔径,这是获得高通量微孔膜的主要原因.通过控制降温速率可以制备纯水通量大于100 L/m2h,孔径约4~5μm且连通性良好的聚苯硫醚微孔膜;研究了聚合物浓度的影响,薄膜的纯水通量随着聚合物浓度的增大而减小,并且当聚苯硫醚浓度>50 wt%时,由于大于临界浓度而失去渗透性.  相似文献   

16.
Crosslinked hyperbranched poly(amine-ester) (HPAE) membranes were prepared by crosslinking its terminal hydroxyl groups with glutaraldehyde (GA). The crosslinked HPAE membranes showed high reactivity and good hydrophilicity. The crosslinking degree was investigated by Fourier transformation infrared spectra (FT-IR). Atom force microscope (AFM) and scanning electron microscope (SEM) reveals that the crosslinked HPAE films have smooth surfaces, dense and homogenous matrices. The swelling degree of the membrane was higher in water than that in isopropanol. From the permeation of pure water through the HPAE membrane, the effect of hydroxyl/aldehyde group ratio on the permeation flux and separation factor was investigated. The results indicated that the permeation flux increase was accompanied with the separation factor decrease if the water concentration increased in the feed solution.  相似文献   

17.
Flat‐sheet asymmetric polyethersulfone (PES) membranes were prepared from polyethersulfone (PES)/ polyethylene glycol (PEG)/ N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion induced by immersion precipitation in water coagulation bath. Effects of propionic acid (PA) as a non‐solvent additive (NSA) on morphology and performance of the membranes prepared from PES/PEG 6000/NMP system in water coagulation bath were investigated. The cross section morphology of the membranes was studied by scanning electron microscopy (SEM). In addition, performance of the membranes was studied by water content measurements and separation experiments using pure water and human serum albumin (HSA) protein solution as feeds. According to SEM analysis, it was found out that the NSA has a significant influence on the structure of the skin layer and the sublayer. The obtained results indicated that addition of PA to the casting solution decreases permeation flux of the prepared membranes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
具有界面交联结构藻酸钠复合膜的制备与性能   总被引:1,自引:1,他引:0  
报道了一种具有界面交联结构的新型藻酸钠复合膜及其对醇水和其它有机物水体系的渗透汽化分离性能.该膜的活性层为藻酸钠,支撑层为氨化聚丙烯腈(PAN)多孔膜,在这两层之间存在着界面交联结构.研究了PAN多孔膜的水解时间、进行氨基化的二元胺种类及浓度对复合膜分离性能的影响,用己二胺进行氨基化所得到的复合膜的分离性能明显优于用乙二胺的结果.扫描电镜照片显示水解及氨基化改变了PAN超滤膜的孔结构,这也是影响新型复合膜性能的一个重要原因.  相似文献   

19.
Poly(ether-block-amide) membranes were made via casting a solution on a nonsolvent (water) surface. In this research, effects of different parameters such as ratio of solvent mixture (n-butanol/isopropanol), temperature, composition of coagulation bath (water) and polymer concentration, on quality of the thin film membranes were studied. The mechanism of membrane formation involves solution spreading, solvent–nonsolvent exchange, and partial evaporation of the solvent steps. Solvent- nonsolvent exchange is the main step in membrane formation and determines membrane morphology. However, at higher temperature of polymeric solution greater portion of solvent evaporates. The results showed that type of demixing process (mutual affinity between solvent and nonsolvent) has important role in film formation. Also, addition of solvent to the nonsolvent bath is effective on membrane morphology. The film quality enhances with increasing isopropanol ratio in the solvent mixture. This behavior can be related to increasing of solution surface tension, reduction of interfacial tension between solution and nonsolvent and delayed solvent-nonsolvent demixing. Uniform films were made at a temperature rang of 60–80 °C and a polymer concentration of 4–7 wt%. Morphology of the membranes was investigated with scanning electron micrograph (SEM). Pervaporation of ethyl butyrate/water mixtures was studied using these membranes and high separation performance was achieved. For ethyl butyrate/water mixtures, It was observed that both permeation flux and separation factor increase with increasing ethyl butyrate content in the feed. Increasing temperature in limited range studied resulted in decreasing separation factor and increasing permeation flux.  相似文献   

20.
Asymmetric gas separation membranes were prepared by the phase inversion technique under different gelation conditions from polysulfone/N,N-dimethylacetamide (DMAc) solutions. The dual bath method was employed to control the skin layer properties: the cast film was immersed in 2-propanol bath and water bath in sequence. The membranes were characterized by the permeance of oxygen and nitrogen gases and the observation with scanning electron microscopy (SEM). A thin layer of silicone rubber (PDMS) was laminated on the surface of each asymmetric polysulfone membrane to eliminate the effect of defects in the skin layer. The oxygen permeance was inversely proportional to the square root of immersion time in the first (2-propanol) bath. The skin layer thickness determined by SEM observation increased with an increase in the immersion time in the first bath. For a given immersion time, the oxygen permeance decreased with an increase in the polymer concentration in the casting solution. Selectivity of oxygen over nitrogen also depended both on the immersion time in the first bath and the polymer concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号