首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The aim of this study is to prepare magnetic beads which can be used for the removal of heavy metal ions from synthetic solutions. Magnetic poly(ethylene glycol dimethacrylate‐vinyl imidazole) [m‐poly(EGDMA‐VIM)] beads were produced by suspension polymerization in the presence of magnetite Fe3O4 nano‐powder. The specific surface area of the m‐poly(EGDMA‐VIM) beads was found to be 63.1 m2/g with a size range of 150–200 µm in diameter and the swelling ratio was 85%. The average Fe3O4 content of the resulting m‐poly(EGDMA‐VIM) beads was 12.4%. The maximum binding capacities of the m‐poly(EGDMA‐VIM) beads were 32.4 mg/g for Cu2+, 45.8 mg/g for Zn2+, 84.2 mg/g for Cd2+and 134.5 mg/g for Pb2+. The affinity order on mass basis is Pb2+>Cd2+>Zn2+>Cu2+. Equilibrium data agreed well with the Langmuir model. pH significantly affected the binding capacity of the magnetic beads. Binding of heavy metal ions from synthetic wastewater was also studied. The binding capacities were 26.2 mg/g for Cu2+, 33.7 mg/g for Zn2+, 54.7 mg/g for Cd2+ and 108.4 mg/g for Pb2+. The magnetic beads could be regenerated up to about 97% by treating with 0.1 M HNO3. These features make m‐poly(EGDMA‐VIM) beads a potential candidate for support of heavy metal removal under magnetic field.  相似文献   

2.

The dynamic release of drug propranolol HCl from the propranolol HCl–resin complex (PRC) loaded calcium alginate beads has been studied in the buffer media of pH 1.2 at the physiological temperature 37°C. The PRC encapsulated beads demonstrated nearly 58.04% release while naked PRC particles released 98.00% drug in 24 h in the gastric fluid. The amount of drug released was found to increase with and decrease in the amount of sodium alginate in the beads. Similarly, with the increase in the amount of entrapped PRC particles within the beads, the quantity of drug released was also observed to increase. The degree of crosslinking of beads also affected the release kinetics. Interestingly, the release from naked PRC particles followed ‘first‐order’ kinetics while PRC particles, entrapped in calcium–alginate beads, exhibited ‘diffusion controlled’ release behavior as indicated by liner nature of fractional release vs. √t plot.  相似文献   

3.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A magnetic solid-phase extraction sorbent consisting of polyaniline-coated magnetite nanoparticles entrapped in alginate beads (PANI/alginate/Fe3O4) was successfully synthesised and applied for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water samples. The magnetite nanoparticles helped to provide an easy and rapid isolation of the sorbent from the sample solution using an external magnet. The alginate beads helped to increase the surface area for polyaniline coating. The polyaniline-coated alginate/magnetite composite helped to increase the extraction efficiency due to the π–π interactions between the polyaniline and the PAHs. Various parameters that affected the extraction efficiencies were optimised including the polymerisation time, the amount of sorbent, sample pH, extraction time, ionic strength, and desorption conditions. Under the optimal conditions, a linear response was achieved in the concentration range of 0.040–50.0 µg L?1, and the limit of detection was 0.010 µg L?1. This simple, convenient, cost-effective, and environmentally friendly method was successfully applied for the extraction and enrichment of PAHs in water samples. The recoveries ranged from 86.0% to 97.8% with a relative standard deviation <10 %.  相似文献   

5.
A separation-preconcentration method based on supramolecular solvent ultrasonic-assisted liquid-phase microextraction (Ss-USA-LPME) for spectrophotometric determination of mercury as 1-(2-pyridylazo)-2-naphthol (PAN) chelates has been established. Red coloured Hg(II)-PAN hydrophobic complex was extracted into the supramolecular phase (1-decanol/THF) at pH 9.5. The extract was separated from aqueous phase by centrifugation, diluted with ethanol and determined by UV–Vis spectrophotometer at λmax = 560 nm. The influences of important analytical parameters such as pH, amount of PAN, 1-decanol and THF, sample volume and matrix effects for the quantitative recoveries were examined and optimised. Under the optimised experimental conditions, the amount of ligand, 1-decanol and THF were 1.0 × 104 M, 200 µL and 300 µL, respectively. The optimum time of ultrasonic bath and centrifugation were found as 2 min and 5 min. A linear calibration graph was obtained linearly in the concentration ranges of 8.31000 µg L?1. The preconcentration factor was obtained as 20. The limit of detection (LOD) was 2.6 µg L?1 with the relative standard deviation (RSD) of 2.4% for mercury (C = 100 µg L?1, n = 7). The validity of the developed Ss-USA-LPME technique was checked with a certified reference material of NIST 1641d. The presented method has been successfully applied to the determination of mercury in water samples.  相似文献   

6.
《Analytical letters》2012,45(13):2217-2230
Abstract

(Acetylacetone)‐2‐thiol‐phenyleneimine (H2L) immobilized on an anion‐exchange resin (Dowex) was used for separation and removal of mercury from natural water samples and for preconcentration prior to its determination by cold vapor inductively coupled plasma atomic emission spectroscopy. The metal was eluted from the column using a solution of 10% thiourea in 0.1 M HCl. The modified resin is higly selective with an exchange capacity of 1.60 mmol g?1. Various parameters like pH, column flow rate, and desorbing agents are optimized. The proposed method has a linear calibration range of 15–1000 ng/ml Hg(II), with a relative standard deviation at the 15 ng/ml level of 3.5%. The precision of the method (evaluated as the relative standard deviation obtained after analyzing six series of five replicates) was ±4.2% at the 50 ng/ml level of Hg(II). The method has been used for routine determination of trace levels of mercury species in natural waters. The potential application of modified resin for the removal of mercury(II) from two natural water samples (top water and lake water) spiked with 50 ng/ml of mercury (II) was studied by ICP‐AES, and the results proved that excellent percent extraction of mercury(II) from both natural water samples was obtained by column method using modified resin.  相似文献   

7.
《Analytical letters》2012,45(9):1735-1747
Abstract

A new chelating resin has been synthesized by introducing a quinaldinic acid amide group into styrenedivinyl benzene (8%) copolymer beads. The resin is stable in fairly strong acids or alkali and has been characterized by elemental analysis for nitrogen and from i.r. spectra. The water regain value is 0.37g/g. The sorption patterns of Na(I), K(I), Ca(II), Mg(II), Pb(II), Cu(II), Ni(II), Zn(II), Cd(II), Hg(II) and Fe(III) on the chelating resin have been studied as a function of pH. The resin selectively sorbs Hg(II) ever a wide pH-range of 2.5–7.6 with high efficiency. The maximum exchange capacity for Hg(II) is 1.98 mmols g?1 at pH 5.5. Over 99% of Hg(II) sorbed has been recovered by using 10% thiourea in 1M HClO4 both by batch and column operations. The has been utilized in the preconcentration and recovery of Hg(II) from industrial and laboratory waste water.  相似文献   

8.
The dynamic release of a model drug (vitamin B2) from chitosan coated calcium alginate beads has been studied in the media of varying pH and the Hixon‐Crowel model has been applied to the experimental data, using a novel ‘curve area measurement’ (CAM) approach. The two release profiles, namely experimental and ideal, were found to be in close agreement except for the initial phase of the release process.  相似文献   

9.
《先进技术聚合物》2018,29(2):884-895
In the present work, new matrix bead formulations based on linear and branched polysaccharides have been developed using an ionic gelation technique, and their potential use as oral drug carriers has been evaluated. Using calcium chloride as a cross‐linking agent and sodium diclofenac (SD), as a model drug, acacia gum–calcium alginate matrix beads were formulated. The response surface methodology based on 32 factorial design was used as a statistical method to evaluate and optimize the effects of the biopolymers‐blend ratio and the concentration of calcium chloride on the particle size (mm), density (g/cm3), drug encapsulation efficiency (%), and the cumulative drug release after 8 hours (R8h,%). The optimized beads with the highest drug encapsulation efficiency were examined for a drug‐excipients compatibility by powder X‐ray diffraction, differential scanning calorimetry, thermo‐gravimetric analysis, and Fourier transform‐infrared spectroscopy analyses. The swelling and degradation of the matrix beads were found to be influenced by the pH of medium. Higher degrees of swelling were observed in intestinal pH than in stomach pH. Accordingly, the drug release study showed that the amount of SD released from the acacia gum–calcium alginate beads was higher in intestinal pH than in stomach pH. Therefore, the in vitro drug release from the SD‐loaded beads appears to follow the controlled‐release (Hixson‐Crowell) pattern involving a case‐2 transport mechanism operated by swelling and relaxation of the polymeric blend matrix.  相似文献   

10.
The removal of Hg(II) ions from aqueous solution by adsorption onto cross-linked polymeric beads of carboxymethyl cellulose (CMC) and sodium alginate was studied at fixed pH (6) and room temperature 28 ± 0.2°C. The cross-linked polymeric beads were characterized by FTIR spectra. Sorption capacity of the polymer for the mercury ions was investigated in aqueous media consisting different amounts of mercury ions (2.5 to 100 mg dm?3) and at different pH values (2 to 8). Adsorption behavior of Hg(II) ions could be modeled using both the Langmuir and Freundlich isotherms. The dynamic nature of adsorption was quantified in terms of several kinetic constants such as rate constants for adsorption (k1) and Lagergreen rate constant (Kad). The influence of various experimental parameters such as effect of pH, contact time, solid-to-liquid ratio, salt effect, and temperature effect etc. were investigated on the adsorption of Hg(II) ions.  相似文献   

11.
Isonitrile derivatives of crosslinked polyacrylamide beads (Biogell P-100) were prepared by a two-step procedure: a. N-hydroxymethylation (methylolation) of amide groups on the polymer by treatment with formaldehyde; and b. Attachment of side chains, containing isonitrile functional groups by a displacement reaction involving 1-tosyloxy-3-isocyanopropane (p-CH3-C6H4·SO2·O·(CH2)3 NC) and alkoxide ions generated on methylolated polyacrylamide by treatment with a strong base in a polar aprotic solvent. The modified polyacrylamide beads were tested as support for the immobilization of proteins, and low mol wt ligands by four component condensation (4CC) reactions. Trypsin-polyacrylamide acting on N-benzoyl-L-arginine ethylester exhibited nonlinear Michaelis Menten kinetics and distorted pH activity profiles. The kinetic anomalies could be reduced by increasing the concentration of buffer. The data were consistent with a model assuming “buffer facilitated proton transport” in a diffusionally constrained system.  相似文献   

12.
In this study, antimicrobial pigment cinnabarinic acid (CA) was produced from Pycnoporus cinnabarinus in laboratory‐scale batch cultures. Magnetic poly(ethylene glycol dimethacrylate‐N‐methacryloyl‐l‐tryptophan methyl ester) [m‐poly(EGDMA‐MATrp)] beads (average diameter = 53–103 µm) were synthesized by copolymerizing of N‐methacryloyl‐l‐tryptophan methyl ester (MATrp) with ethylene glycol dimethacrylate (EGDMA) in the presence of magnetite (Fe3O4) and used for the adsorption of CA. The m‐poly(EGDMA‐MATrp) beads were characterized by N2 adsorption/desorption isotherms (Brunauer Emmet Teller), X‐ray photoelecron spectroscopy, scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis, electron spin resonance and swelling studies. The efficiency of m‐poly(EGDMA‐MATrp) beads for separation of CA from culture fluid was evaluated. The effects of pH, initial concentration, contact time and temperature on adsorption were analyzed. The maximum CA adsorption capacity of the m‐poly(EGDMA‐MATrp) beads was 272.9 mg g−1 at pH 7.0, 25 °C. All the isotherm data can be fitted with the Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. The adsorption process obeyed pseudo‐second‐order kinetic model. Thermodynamic parameters ΔH = 5.056 kJ mol−1, ΔS = 52.44 J K−1 mol−1 and ΔG = −9.424 kJ mol−1 to ‐11.27 kJ mol−1 with the rise in temperature from 4 to 40 °C indicated that the adsorption process was endothermic and spontaneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
TAML complex is oxidized by H2O2 or tBuOOH in water at pH < 10 into the corresponding iron(IV) μ-oxo-bridged dimer 2, which oxidizes readily ring-substituted thioanisoles p-XC6H4SMe (X=H, MeO, Me, Cl, CN) into the corresponding sulfoxides with regeneration of 1. The oxidation studied under pseudo-first-order conditions using the stopped-flow technique by monitoring the fading of the 420-nm band of 2 follows hyperbolic kinetics according to the rate law kobs = ab[p-XC6H4SMe]/(1 + b[p-XC6H4SMe]) at pH 8 and 25 °C. Parameters a, b, and ab all decrease for electron-poorer thioanisoles and the Hammett value ρ?~?1 has been found for ab, which can be associated with the second-order rate constants for oxidation of thioanisoles by 2. The kinetics of oxidation of p-NO2C6H4SMe by H2O2 catalyzed by 1 has been studied under steady-state conditions. Covering the concentration of 1 in a 100-fold range has revealed that though first-order kinetics in 1 is observed at low catalyst concentrations (below 10?6 M), there is a significant negative deviation from linearity at [1]?>?10?6 M. The latter was rationalized by the equilibrium between the monomeric and dimeric FeIV species 2 M???M–M (Kd), both being able to oxidize p-NO2C6H4SMe with rate constants km and kd which were found to be (13?±?1)?×?104 and (0.32 ± 0.01)?×?104 M?1 s?1, respectively. The difference in the rate constants is the key for resolving the dilemma of faster catalysis versus slower single-turnover reactivity of TAML activators in water.  相似文献   

14.
L'action de l'acide perpropionique CH3CH2CO3H (1) a été étudiée en milieu alcalin micellaire (pH ~ 11; chlorure de cétyl triméthyl ammonium, CTACl) sur le thioanisole (4) et sur ses dérivés p-substitués, le p-méthoxy (2), le p-méthyl (3), le p-bromo (5) et le p-nitro (6). L'oxydation conduit exclusivement aux dérivés sulfoxydes (2a–6a). Les effets du pH, de la substitution et de la température ont permis de mieux comprendre la réaction d'oxydation de ces sulfures en sulfoxydes par l'acide perpropionique. Des calculs ab initio ont montré la cohérence de nos hypothèses. Enfin l'influence du milieu sur la cinétique de la réaction a été évalué en phase aqueuse (pH ~ 11) en présence de CTACl.

The reaction of perpropionic acid CH3CH2CO3H (1) with thioanisole (4) and p-substituted thioanisoles [p-methoxy (2), p-methyl (3), p-bromo (5), and p-nitro (6)] in stoechiometric proportion has been carried out in micellar medium (cetyl trimethyl ammonium chloride, CTACl). Studies of the influence of the pH, the temperature and the substitution of the thioanisole, provide a better understanding of the sulfoxides (2a–6a) formation. Ab initio calculations have been achieved and the oxidation reaction has been studied in detail in aqueous medium (pH = 11).  相似文献   

15.
A synthetic polymer, polyvinyl alcohol (PVA), a cheap and nontoxic synthetic polymer to organism, has been ascribed for biocatalyst immobilization. In this work PVA–alginate beads were developed with thermal, mechanical, and chemical stability to high temperatures (<80 °C). The combination of alginate and bead treatment with sodium sulfate not only prevented agglomeration but produced beads of high gel strength and conferred enzyme protection from inactivation by boric acid. Naringinase from Penicillium decumbens was immobilized in PVA (10%)–alginate beads with three different sizes (1–3 mm), at three different alginate concentrations (0.2–1.0%), and these features were investigated in terms of swelling ratio within the beads, enzyme activity, and immobilization yield during hydrolysis of naringin. The pH and temperature optimum were 4.0 and 70 °C for the PVA–alginate-immobilized naringinase. The highest naringinase activity yield in PVA (10%)–alginate (1%) beads of 2 mm was 80%, at pH 4.0 and 70 °C. The Michaelis constant (K Mapp) and the maximum reaction velocity (V maxapp) were evaluated for both free (K Mapp = 0.233 mM; V maxapp = 0.13 mM min−1) and immobilized naringinase (K Mapp = 0.349 mM; V maxapp = 0.08 mM min−1). The residual activity of the immobilized enzyme was followed in eight consecutive batch runs with a retention activity of 70%. After 6 weeks, upon storage in acetate buffer pH 4 at 4 °C, the immobilized biocatalyst retained 90% of the initial activity. These promising results are illustrative of the potential of this immobilization strategy for the system evaluated and suggest that its application may be effectively performed for the entrapment of other biocatalysts.  相似文献   

16.
Based on an achiral 2-benzothiazolylthioacetic acid (HL) ligand, three Co(II) coordination compounds, {[Co(L)2(H2O)3]·H2O}n (1), [Co(L)2(H2O)2]n (2), and [Co(L)2(H2O)4]·2H2O (3), were obtained under different pH environments. Compound 1 possessing an interesting chiral 1-D helical double chain was synthesized with pH of 5.0~6.5, and the chiral symmetry breaking has been probed by single-crystal X-ray diffraction and circular dichroism spectroscopy. Switching pH to 4.0~5.0 and 3.0~4.0 resulted in achiral 2 and 3, respectively. Compound 2 has a 1-D chain structure and 3 is mononuclear.  相似文献   

17.
Biosorption of uranium from aqueous solution onto the free and entrapped algae, “Chlamydomonas reinhardtii” in carboxymethyl cellulose (CMC) beads was investigated in a batch system using bare CMC beads as a control system. CMC can be a potential natural biosorbent for radionuclide removal as it contains carboxyl groups. However, limited information is available with the biosorption of uranium by CMC, when adsorption isotherm, kinetics and thermodynamics parameters are concerned. The biosorbent preparations were characterized by swelling tests, FTIR, and surface area studies. The effects of pH, temperature, ionic strength, biosorbent dosage, and initial uranium concentrations on uranium biosorption were investigated. Freely suspended algae exhibited the highest uranium uptake capacity with an initial uranium ion concentration of 1,000 mg/L at pH of 4.5 and at 25 °C. The removal of U(VI) ion from the aqueous solution with all the tested biosorbents increased as the initial concentration of U(VI) ion increased in the medium. Maximum biosorption capacities for free algal cells, entrapped algal cells, and bare CMC beads were found to be 337.2, 196.8, and 153.4 mg U(VI)/g, respectively. The kinetic studies indicated that the biosorption of U(VI) ion was well described by the pseudo-second order kinetic model. The variations in enthalpy and entropy for the tested biosorbent were calculated from the experimental data. The algal cells entrapped beads were regenerated using 10 mM HNO3, with up to 94 % recovery. Algal cells entrapped CMC beads is a low cost and a potential composite biosorbent with high biosorption capacity for the removal of U(VI) from waters.  相似文献   

18.
Pei Liang  Qian Li  Rui Liu 《Mikrochimica acta》2009,164(1-2):119-124
A new method has been developed for the determination of trace molybdenum based on separation and preconcentration with TiO2 nanoparticles immobilized on silica gel (immobilized TiO2 nanoparticles) prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The optimum experimental parameters for preconcentration of molybdenum, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Molybdenum can be quantitatively retained by immobilized TiO2 nanoparticles at pH 1.0 and separated from the metal cations in the solution, then eluted completely with 0.5 mol L?1 NaOH. The detection limit of this method for Mo was 0.6 ng L?1 with an enrichment factor of 100, and the relative standard deviation (RSD) was 3.4% at the 10 ng mL?1 Mo level. The method has been applied to the determination of trace amounts of Mo in biological and water samples with satisfactory results.  相似文献   

19.
The present work describes the dynamic release of model drug riboflavin form uncoated and ethyl cellulose coated barium alginate beads in the media of continuous varying pH at the physiological temperature 37°C. The drug release behavior has been studied in the simulating gastric fluid (SGF, pH 1.2) for 0–2 h and then in the simulating intestinal fluid (SIF pH 6.8) for 2–48 h. In addition to the traditional dissolution test (TDT, the dynamic release has also been studied by a newly developed method, called ‘flow through diffusion cell’ (FTDC). The release profiles, obtained by using these two methods have been found to differ appreciably from each other. Moreover, the nature of the solid mass surrounding the beads in the FTDC method also influences the release behavior of beads. The uncoated beads demonstrated faster drug release of drug in the medium of lower pH (i.e., 1.2) as compared to that in the medium of pH 6.8 and the release process was found to be diffusion controlled.  相似文献   

20.
《Analytical letters》2012,45(9):1763-1778
Abstract

Direct electrochemistry of alpha‐lipoic acid (ALA) was performed at a glassy carbon electrode using cyclic, differential pulse and square wave voltammetry over a wide range of pH. The oxidation of ALA is an irreversible process, pH independent, and involves the charge transfer of one electron. The diffusion coefficient of ALA was calculated from the results obtained at pH 6.9 in 0.1 M phosphate buffer and was shown to be D 0=1.1×10?5 cm2 s?1. The limits of detection (LOD) and quantification (LOQ) calculated from the results obtained at this pH are 1.8 and 6.1 µM, respectively.

The lipoic acid content in two dietary supplements samples, a syrup containing ALA and capsules of ALA, has been determined directly at the glassy carbon electrode by differential pulse voltammetry using the standard addition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号