首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have synthesized novel aromatic amine‐substituted acridine dyes as potential candidates for the photosensitizers in dye sensitized nanocrystalline semiconductor based solar cells (DSSC) cells. The protonation and quaternization of the acridine nitrogen led to acridine dyes with extended absorption from 400–800 nm. Computational modeling was used to evaluate a variety of structures to achieve insights for correlating these types of molecular structures with predicted absorption spectra. Pertinent dihedral angles as well as bond lengths were evaluated to assess and compare planarity and conjugation for these dyes. Other predictions include plots of the HOMO and LUMO levels to qualitatively examine electron distributions and the potential for electron injection. The results from modeling along with the experimental data consisting of synthesis, characterization and UV‐visible absorption properties of the selected dyes are presented.  相似文献   

2.
The release of enrofloxacin entrapped in polyvinyl alcohol (PVA) cryogel at pH?5.5 showed a first-order kinetic, releasing 69.7% of the antibiotic after 4.5?h at 37?°C. In order to slow down the fluoroquinolone release rate, high-methoxylated pectin was added into the cryogel (PVA?CP). A film containing 1.0% (w/v) HM pectin and 5.0???g/ml enrofloxacin released only 3.7% of the antibiotic after 4.5?h. Since the FTIR spectrum showed that most of the interactions between PVA?CP matrix and enrofloxacin were due to polar groups (carboxylate and amine), a two-layer film system was designed to modulate the releasing rate of the drug. The top film equilibrated with 0.75 or 1.5?M NaCl release up to 41.9% and 89.0% of the enrofloxacin in 4?h, respectively. The release rate of enrofloxacin was found dependent on NaCl concentration in the upper gel layer. The two-layer cryogel system showed attractive features for transcutaneous antibiotic delivery.  相似文献   

3.
Some attempts toward the synthesis of novel inhibitors of glycosyl transferases are described. More successfully, the synthesis of an activated cyclopropacyclohexene and an amide and an amine of a cyclopropa‐fused pyranose are described. None of these three novel compounds proved to be a significant inhibitor of a retaining α‐glucosidase from barley.  相似文献   

4.
The hydrolysis of PEtOx is studied to evaluate the potential toxicity of partially hydrolyzed polymers that might interfere with its increasing popularity for biomedical applications. The hydrolysis of PEtOx is studied in the presence of digestive enzymes (gastric and intestinal) and at 5.8 M hydrochloric acid as a function of temperature (57, 73, 90, and 100 °C). It is found that PEtOx undergoes negligible hydrolysis at 37 °C and that thermal and solution properties are not altered when up to 10% of the polymer backbone is hydrolyzed. Mucosal irritation and cytotoxicity is also absent up to 10% hydrolysis levels. In conclusion, PEtOx will not decompose at physiological conditions, and partial hydrolysis will not limit its biomedical applications.

  相似文献   


5.
An extracellular ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus was purified to homogeneity and characterized, and its potential use for the enhancement of wine aroma was investigated. The crude enzymatic extract was purified in four steps (concentration, dialysis, ultrafiltration, and chromatography) with a yield of around 40 % for total activity. The purified enzyme (designated Sp-βgl-P) showed a specific activity of approximately 20.0 U/mg, an estimated molecular mass of 63 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis, and isoelectric point of 5.0 by isoelectric focusing. Sp-βgl-P has optimal activity at pH 4.0 and at 55 °C. It was stable in a broad pH range at low temperatures and it was tolerant to ethanol and glucose, indicating suitable properties for winemaking. The hydrolysis of glycosidic terpenes was analyzed by adding Sp-βgl-P directly to the wines. The released terpene compounds were evaluated by gas chromatography/mass spectrometry. The enzymatic treatment significantly increased the amount of free terpenes, suggesting that this enzyme could potentially be applicable in wine aroma improvement.  相似文献   

6.
《Analytical letters》2012,45(6):1003-1012
Abstract

This mini‐review discusses the analytical technique of gas chromatography‐mass spectrometry (GC‐MS), specifically basic principles and instrumentations. The applications of GC‐MS to a number of studies for determining organic compounds from around the world are presented and highlight its universal use and acceptance. Selected applications show that GC‐MS is an integral and complimentary part of many field studies involving organic compound detection and determination.  相似文献   

7.
Despite their intrinsic hydrolysable character, imine bonds can become remarkably stable in water when self-assembled in amphiphilic micellar structures. In this work, we systematically studied some of these structures and the influence of various parameters that can be used to take control of their hydrolysis, including pH, concentration, the position of the imine function in the amphiphilic structure, relative lengths of the linked hydrophilic and hydrophobic moieties. Thermodynamic and kinetic data led us to the rational design of stable imines in water, partly based on the location of the imine function within the hydrophobic part of the amphiphile and on a predictable quantitative term that we define as the total hydrophilic–lipophilic balance (HLB). In addition, we show that such stable systems are also stimuli-responsive and therefore, of potential interest in trapping and releasing micellar components on demand.  相似文献   

8.
Radical additions onto olefins have surfaced as an increasingly powerful strategy for the synthesis of difunctionalized scaffolds. However, despite of major advances, known approaches continue to be largely limited to two manifolds, namely 1,2-difunctionalization of alkenes and remote difunctionalization via hydrogen atom transfer (HAT). Herein, we describe a mechanistically distinct approach by photoinduced carbon-carbon (C−C) activation/ring-opening to access γ,δ-unsaturated aldehydes from methylenecyclobutanols and sulfonyl chlorides by strain release. Remarkably, the sulfonyl motif on the products was easily removed by another photocatalytic process, which enabled the concise assembly of the natural product alatanone A. The synthetic utility of our approach was reflected by versatile functional group tolerance, ample substrate scope, and scalability. The photocatalysis represents a conceptually distinct alternative to existing approaches for remote 1,4-diversifications, with a double bond remaining in the thus obtained products.  相似文献   

9.
Mining fungal genomes for glucoamylase and α-amylase encoding sequences led to the selection of 23 candidates, two of which (designated TSgam-2 and NFamy-2) were advanced to testing for cooked or raw starch hydrolysis. TSgam-2 is a 66-kDa glucoamylase recombinantly produced in Pichia pastoris and originally derived for Talaromyces stipitatus. When harvested in a 20-L bioreactor at high cell density (OD600?>?200), the secreted TSgam-2 enzyme activity from P. pastoris strain GS115 reached 800 U/mL. In a 6-L working volume of a 10-L fermentation, the TSgam-2 protein yield was estimated to be ~8 g with a specific activity of 360 U/mg. In contrast, the highest activity of NFamy-2, a 70-kDa α-amylase originally derived from Neosartorya fischeri, and expressed in P. pastoris KM71 only reached 8 U/mL. Both proteins were purified and characterized in terms of pH and temperature optima, kinetic parameters, and thermostability. TSgam-2 was more thermostable than NFamy-2 with a respective half-life (t1/2) of >300 min at 55 °C and >200 min at 40 °C. The kinetic parameters for raw starch adsorption of TSgam-2 and NFamy-2 were also determined. A combination of NFamy-2 and TSgam-2 hydrolyzed cooked potato and triticale starch into glucose with yields, 71–87 %, that are competitive with commercially available α-amylases. In the hydrolysis of raw starch, the best hydrolysis condition was seen with a sequential addition of 40 U of a thermostable Bacillus globigii amylase (BgAmy)/g starch at 80 °C for 16 h, and 40 U TSgam-2/g starch at 45 °C for 24 h. The glucose released was 8.7 g/10 g of triticale starch and 7.9 g/10 g of potato starch, representing 95 and 86 % of starch degradation rate, respectively.  相似文献   

10.
Inspired by the metal–sulfur (M-S) linkages in the nitrogenase enzyme, here we show a surface modification strategy to modulate the electronic structure and improve the N2 availability on a catalytic surface, which suppresses the hydrogen evolution reaction (HER) and improves the rate of NH3 production. Ruthenium nanocrystals anchored on reduced graphene oxide (Ru/rGO) are modified with different aliphatic thiols to achieve M-S linkages. A high faradaic efficiency (11 %) with an improved NH3 yield (50 μg h−1 mg−1) is achieved at −0.1 V vs. RHE in acidic conditions by using dodecanethiol. DFT calculations reveal intermediate N2 adsorption and desorption of the product is achieved by electronic structure modification along with the suppression of the HER by surface modification. The modified catalyst shows excellent stability and recyclability for NH3 production, as confirmed by rigorous control experiments including 15N isotope labeling experiments.  相似文献   

11.
Porous aromatic frameworks (PAFs) with robust structure, high stability, and high surface area have attracted intense interest from scientists in diverse fields. However, there are still very few reports on the adsorption of organic dyes by PAFs. In this work, four new PAFs have been facilely synthesized by the polymerization of a tetrahedral-shaped (four-node) monomer with a series of three-node monomers through Suzuki–Miyaura coupling reactions. All the obtained materials possess hierarchical porous structures and show high thermal and chemical stability. The Brunauer–Emmett–Teller (BET) surface areas of these PAFs were determined to be 857 m2 g−1 for PAF-111 , 526 m2 g−1 for PAF-112A , 725 m2 g−1 for PAF-112B , and 598 m2 g−1 for PAF-113 . Rhodamine B was selected as a model organic dye to test the adsorption capacities of the obtained PAF materials. PAF-111 showed a maximum adsorption capacity of 1666 mg g−1 (167 wt %) for Rhodamine B, which is among the highest values reported to date for porous organic materials. It is noteworthy that PAF-111 could be reused in at least ten cycles under the adsorption conditions without any loss of adsorption capacity. Our study has revealed the great potential and advantages of PAFs as ultrastable adsorption materials for the removal of organic dyes.  相似文献   

12.
Facile preparation of low-cost electrocatalysts for efficient oxygen evolution reaction (OER) remains a big challenge. Herein, a novel strategy for ultrafast (20 s) transformation of bulk metal–organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient OER has been developed. For two isomeric MOFs ( FJI-H25Fe and FJI-H25FeCo ), only the metastable FJI-H25FeCo bulk can immediately transform into FeCo-oxyhydroxides nanosheets through electric-field assisted hydrolysis. The potential evolution process from MOF bulk to FeCo-oxyhydroxides nanosheets has been investigated in detail. The as-made nanosheets exhibit excellent OER performances, showing an extremely low overpotential of 231 mV at the current density of 10 mA cm−2, a relatively small Tafel slope of 42 mV dec−1, and long-term durability of at least 30 h. This work not only provides a novel strategy for facile preparation of low-cost and efficient OER electrocatalysts, but also represents a new way for preparation of metal oxyhydroxides nanosheets with good crystallinity and morphology, and a fresh method for mild synthesis of nanosized derivatives from MOF materials.  相似文献   

13.
Transition‐metal‐catalyzed C? H activation has recently emerged as a powerful tool for the functionalization of organic molecules. While many efforts have focused on the functionalization of arenes and heteroarenes by this strategy in the past two decades, much less research has been devoted to the activation of non‐acidic C? H bonds of alkyl groups. This Minireview highlights recent work in this area, with a particular emphasis on synthetically useful methods.  相似文献   

14.
Catalyticoxidationisanenergyefficientandeco nomicalwaytogetridofvolatileorganiccompound(VOC)emissions[1~ 3] .Sungkonoetal[4 ] havede velopedanewtypeofcatalystforVOCtreatment,whichconsistsofcatalyticsubstancesdispersedonaporousaluminafilm ,andthetotaloxidationoftoluenewasobtainedat 35 0℃ .Stainlesssteelhasmanyapplicationsinindustryforitshighanti corro sionpropertiesandcompactoxidecoatingafteran odizing[5,6 ] .However ,thereislittlerelevantinfor mationpublishedonVOCtreatment .Inthispaper ,…  相似文献   

15.
Matrix solid phase dispersion (MSPD), ultrasonic extraction followed by a solid phase extraction (USE–SPE) and reflux extraction (REFLUX) were studied for the analysis of polyphenols and organic acids in tobacco. The analysis was by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC–MS–MS). The multi-mode support sorbent Zirconia/AA12S50 in MSPD is more suitable for the extraction of tobacco polyphenols than conventional silica or C18 silica. Although the matrix effect of USE–SPE is slightly stronger than MSPD and REFLUX for most target compounds, it gave higher extraction capacity, recoveries and sensitivity.  相似文献   

16.
Based on the geochemical studies of natural gases in the past ten years in China, the authors have proposed a new model for their genesis--multi-source overlap, multi-stage continuity, main source-controlling type and nomenclature by the main stage.Multi-source refers to a diversity of material sources involved in the formation of natural gases, including abiogenic and biogenic material sources. In regard to biogenic sources, either oil-generating or coal-generating organic matter would produce gaseous hydrocarbon reservoirs of commercial importance. Generally, natural gases originating from these sources can overlap to form gas reservoirs. Under specific circumstances mantle-source abiogenic gases could overlap biogenic gases to form gas reservoirs. In nature, natural gases predominated by gaseous hydrocarbons may be formed from a single end-member source. However, multi-source overlap is more typical of the genesis of natural gases.  相似文献   

17.
An efficient method is reported for the synthesis of phenacyl esters by reaction of carboxylic acids with a-bromoacetophenone promoted by potassium fluoride in ionic liquid [Bmim]PF6, the yield of the reaction is almost quantitative and the products are essentially pure.  相似文献   

18.
19.
20.
Fermentation of enzymatic hydrolysate of waste newspaper was investigated for cellulosic ethanol production in this study. Various nonionic and ionic surfactants were applied for waste newspaper pretreatment to increase the enzymatic digestibility. The surfactant-pretreated newspaper was enzymatically digested in 0.05 M sodium citrate buffer (pH 4.8) with varying solid content, filter paper unit loading (FPU/g newspaper), and ratio of filter paper unit/β-glucosidase unit (FPU/CBU). Newspaper pretreated with the anionic surfactant sodium dodecyl sulphate (SDS) demonstrated the highest sugar yield. The addition of Tween-80 in the enzymatic hydrolysis process enhanced the enzymatic digestibility of newspaper pretreated with all of the surfactants. Enzymatic hydrolysis of SDS-pretreated newspaper with 15% solid content, 15 FPU/g newspaper, and FPU/CBU of 1:4 resulted in a newspaper hydrolysate conditioning 29.07 g/L glucose and 4.08 g/L xylose after 72 h of incubation at 50 °C. The fermentation of the enzymatic hydrolysate with Saccharomyces cerevisiae, Pichia stipitis, and their co-culture produced 14.29, 13.45, and 14.03 g/L of ethanol, respectively. Their corresponding ethanol yields were 0.43, 0.41, and 0.42 g/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号