首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(lactic acid) (PLA)/poly(?-caprolactone) (PCL)/nano-silica composite degradable films were prepared by a solvent casting method. SEM results showed that the nano-silica particles were dispersed uniformly in the PLA/PCL matrix. TGA results indicated that the thermal decomposition temperature rose with the increase of nano-silica content. The tensile strength of the composites was enhanced with the increase of nano-silica content up to 2%. The tensile strength increased with the silica content and reached its maximum (22.51 Mpa). The improvement in the water uptake ratio in the PLA/PCL/silica nanocomposites may be attributable to the presence of silica nanoparticles in the PLA/PCL matrix. After 15 weeks total processing time for the solution of alkaline and phosphate buffer, the performances of 16.23% and 3.65% for degradation.  相似文献   

2.
The properties and biodegradation behavior of blends of poly(lactic acid) (PLA) and ethylene-vinyl acetate-glycidylmethacrylate copolymer (EVA-GMA), and their composites with cellulose microfibers (CF) were investigated. The blends and composites were obtained by melt mixing and the morphology, phase behavior, thermal and rheological properties of PLA/EVA-GMA blends and PLA/EVA-GMA/CF composite films were investigated as a function of the composition. The disintegrability in composting conditions was examined by means of morphological, thermal and chemical analyses to gain insights into the post-use degradation processes. The results indicated a good compatibility of the two polymers in the blends with copolymer content up to 30 wt.%, while at higher EVA-GMA content a phase separation was observed. In the composites, the presence of EVA-GMA contributes to improve the interfacial adhesion between cellulose fibers and PLA, due to interactions of the epoxy groups of GMA with hydroxyls of CF. The addition of cellulose microfibers in PLA/EVA-GMA system modifies the rheological behavior, since complex viscosity increased in presence of fibers and decreased with an increase in frequency. Disintegration tests showed that the addition of EVA-GMA influence the PLA disintegration process, and after 21 days in composting conditions, blends and composites showed faster degradation rate in comparison with neat PLA due to the different morphologies induced by the presence of EVA-GMA and CF phases able to allow a faster water diffusion and an efficient PLA degradation process.  相似文献   

3.
Polylactide (PLA)/cellulose nanofiber (CNF) biocomposites were prepared via solution casting and direct melt mixing. To improve the compatibility, a masterbatch of CNFs and poly(ethylene glycol) (PEG) (1:2) was also prepared. The effects of PEG on the morphology and properties of the biocomposites were investigated. The dispersion/distribution of nanofibers in PLA was improved when the masterbatch was used and the composites were prepared in solution. Substantial effects on the rheological properties of solution-prepared PLA/CNF/PEG composites were observed compared to composites containing no PEG, whereas for melt-prepared composites no significant changes were detected. Increased crystalline content and crystallization temperature were observed for the composites prepared via the masterbatch and solvent casting. The storage modulus of PLA was increased by 42 and 553% at 25 and at 80 °C, respectively, for the solution-based PEG-compatibilized composite containing 2 wt% nanofibers. Also, a better light transmittance was measured for the PLA/CNF/PEG composites prepared in solution.  相似文献   

4.
Water sorption into polylactide (PLA) and polylactide‐montmorillonite (PLLA‐MONT) composites containing 5 wt % of montmorillonite (MONT) under different heat treatment conditions was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. Results showed that water sorption in neat polymer films and composite films increased with heat treatment temperature up to 120 °C. Differential scanning calorimetry was used to measure the glass‐transition temperature and isothermal crystallization kinetics of all samples. The mobility of the amorphous domain in all samples increased with heat treatment temperature, indicated by the decrease in glass‐transition temperature. PLA composites crystallized at a much faster rate than neat PLA did because MONT acted as a nucleating agent. Under the same heat treatment condition, water sorption in PLLA‐MONT composites was always higher than that in neat PLA due to the presence of the hydrophilic hydroxyl groups on the surface of MONT particles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

5.
Carbon nanotubes (CNTs) and reduced graphene oxide (RGO) were successfully assembled by chemical reaction to obtain CNT‐d‐RGO particles. Then, a home‐made dynamic impregnating device was used to prepare hybrid CNT‐d‐RGO/polyethylene glycol (PEG). Next, the different modifiers, including CNTs, GO, CNT‐d‐RGO, PEG, and CNT‐d‐RGO/PEG, were, respectively, added into poly‐(lactic acid) (PLA) matrix via melt‐compounding. The dispersed morphology for these different modifiers within the PLA matrix was confirmed by SEM and TEM observations. Especially, compared with the identical weight ratio of CNT‐d‐RGO, the hybrid CNT‐d‐RGO/PEG within the PLA matrix exhibited an excellent exfoliated and interconnected networks morphology. Moreover, compared with pure PLA, not only the crystallinity of all PLA‐based composites notably improved, but half‐crystallization time was also shortened. Furthermore, despite the addition of different modifiers, the crystal form of PLA‐based composites remained unchanged. Noticeably, compared with those of pure PLA, the tensile stress, strain, and modulus of PLA composite added with CNT‐d‐RGO/PEG increased by 29.4%, 4.1%, and 56.1%, respectively, and the V‐notch impact strength slightly improved. In addition, compared with pure PLA, volume resistivity of the PLA composite added with 1 wt% CNT‐d‐RGO/PEG decreased by 93.1%, and its volume conductivity increased by five orders of magnitude.  相似文献   

6.
Maple fibres were treated with a variety of sequential treatments, namely sodium hydroxide (NaOH), NaOH followed by acetylation, or NaOH followed by silanation. These fibres were incorporated into a polylactic acid (PLA) composite and the biodegradation effects were investigated. After 124 days, all composites had exceeded 90% biodegradation with most close to 100%. The PLA composite with the NaOH-treated fibres had the quickest onset of degradation (4.9 days) and highest peak rate of degradation (1.77% biodegradation/day) of all composites studied. Neat PLA had a similarly high peak rate of degradation at 1.85% biodegradation/day, but had a later onset of 11 days. Gel permeation chromatography (GPC) analysis showed the earlier onset of degradation of the composites was caused by increased hydrolysis during composite fabrication as well as composting. GPC showed the formation of up to three molecular weight bands in the PLA during composting which were hypothesised to be occurring by surface hydrolysis, bulk hydrolysis and hydrolysis at the fibre interface. Analysing the remaining composite revealed the NaOH treatment not only caused an increased rate of degradation in the PLA through increase fibre porosity, but also caused an increased rate of degradation in the fibre from the lack of surface waxes and hemicellulose. Similar, yet slower, behaviours were also seen in the NaOH followed by acetylation and NaOH followed by silane treated composites with all composites degrading more rapidly than the neat PLA and neat maple fibre samples.  相似文献   

7.
A series of poly(lactic acid) (PLA) films that including fully paraben substituted triazine derivatives having anti-bacterial properties have been prepared by utilizing the solvent-casting method. PLA as biodegradable polymer, poly(ethylene glycol) (PEG) as a plasticizing agent and s-triazine molecules (TA01, TA02, TA03, TA04, and TA05) behaving as an anti-bacterial component have been utilized in the experiments. The influence of TA compounds on the antibacterial performance of PLA/PEG films was investigated for the first time against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria via the contact active method. TA01-03-05 incorporated PLA/PEG films gave the best results against E.coli bacteria and log10 reductions of these films were 0.78, 0.64, and 0.65 respectively. The effect of TA compounds on the cell viability was investigated against cancer and non-cancerous cell lines using an MTS assay. The results showed that TA compounds had a positive effect on cell growth in non-cancerous cells, while they had a negative effect on cell growth in cancer cells. Furthermore, the addition of TA considerably increased the decomposition temperatures from 349° to 361° and char yield from 0.65 for PLA/PEG film to 2.3 for PLA/PEG/TA05. All of the films had good transparency and low opacity which was 7.2 for pure PLA used for control and the maximum opacity value was 11.2 observed for PLA/PEG/01. TA03 and TA04 caused a decrement of water vapor permission when compared to PLA/PEG films from 1439 to 749 and 664. It was also observed that pure PLA/PEG film lost weight rapidly over time during degradation tests. On the other hand, weight loss wasn't observed in PLA/PEG/TA films. This study focused on demonstrating the use of our new, flexible PLA/PEG derivatives in food and medical packaging.  相似文献   

8.
In order to modify the brittleness and flame retardant properties of poly(lactic acid) (PLA), a series of flame retardant toughened PLA composites were prepared using poly(ethylene glycol) 6000 (PEG6000) as a toughening and charring agent together with ammonium polyphosphate (APP) as an acid source and blowing agent. The fire and thermal behavior of PLA/PEG/APP composites was evaluated by limiting oxygen index (LOI), UL‐94, cone calorimeter, and thermogravimetric analysis (TGA). The results showed that the PLA/PEG/APP system had good charring ability and could improve the flame retardancy of PLA. When the content of APP in the composites was more than 5 wt%, all samples could reach UL‐94 V‐0 rating. The results of mechanical property tests demonstrated that the brittleness of PLA was also improved after blended with PEG6000. All the PLA/PEG/APP composites with an APP content of less than 10 wt% showed an obvious neck and fracture behavior, that is, the tensile behavior of PLA was changed from brittle to ductile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
纳米SiO_2/聚丙烯复合材料的反应性增容   总被引:1,自引:0,他引:1  
利用反应性增容技术制备了纳米二氧化硅/聚丙烯复合材料.首先探讨了将甲基丙烯酸缩水甘油酯-丙烯酸丁酯共聚物接枝到纳米二氧化硅粒子表面进行改性的各种影响因素,然后将接枝改性纳米二氧化硅与聚丙烯以及作为反应性增容剂的氨基化聚丙烯共混.结果表明,改性粒子上的环氧基与氨基化聚丙烯上的氨基之间的化学反应大大增强了复合材料的界面作用,从而在粒子含量很低时明显提高了聚丙烯的拉伸强度、模量和冲击强度.  相似文献   

10.
We have prepared a series of polylactide/exfoliated graphite (PLA/EG) nanocomposites by melt‐compounding and investigated their morphology, structures, thermal stability, mechanical, and electrical properties. For PLA/EG nanocomposites, EG was prepared by the acid treatment and following rapid thermal expansion of micron‐sized crystalline natural graphite (NG), and it was characterized to be composed of disordered graphite nanoplatelets. It was revealed that graphite nanoplatelets of PLA/EG nanocomposites were dispersed homogeneously in the PLA matrix without forming the crystalline aggregates, unlike PLA/NG composites. Thermal degradation temperatures of PLA/EG nanocomposites increased substantially with the increment of EG content up to ~3 wt %, whereas those of PLA/NG composites remained constant regardless of the NG content. For instance, thermal degradation temperature of PLA/EG nanocomposite with only 0.5 wt % EG was improved by ~10 K over PLA homopolymer. Young's moduli of PLA/EG nanocomposites increased noticeably with the increment of EG content up to ~3 wt %, compared with PLA/NG composites. The percolation threshold for electrical conduction of PLA/EG nanocomposites was found to be at 3–5 wt % EG, which is far lower graphite content than that (10–15 wt % NG) of PLA/NG composites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 850–858, 2010  相似文献   

11.
Hybrid sisal fibers (HSFs) were made by mixing untreated sisal fibers with alkali-treated sisal fibers (ASFs), and the HSFs were blended with polylactic acid (PLA) matrix. Then the diatomite particles were added into the PLA/HSFs composite to make PLA/HSFs/diatomite composite. The effect of these two fillers on mechanical and thermal properties was investigated. The results showed that the reinforcing effect of HSFs was better than ASFs. Mechanical and thermal properties (especially the impact strength and crystallinity) of PLA/HSFs were higher than that of PLA/ASFs. The addition of diatomite further improved the mechanical and thermal properties of PLA composites.  相似文献   

12.
Organic nano-silica was firstly synthesized by sol-gel method with methyl methacrylate (MMA) and butyl acrylate (BA) in the micelles as dispersing media, tetraethoxysilicate (TEOS) as precursor, hydrochloric acid as catalyst and methacryloylpropyl trimethoxysilane (A174) as modifier. Subsequently, the nano-silica/polyacrylate composite emulsions were directly prepared by in-situ emulsion polymerization under the action of the initiator. The structure and properties were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light-scattering (DSL), thermogracvimetry (TG) and transmission electron microscopy (TEM). The results showed that A174-modified nano-silica was successfully synthesized in the acrylate-based emulsions by the sol-gel method. The nano-silica was encapsulated by polyacrylate, and the composite latex particles exhibited an apparent core-shell structure. The A174 could improve the lipophilicity of nano-silica and increase the grafting efficiency of polyacrylate on nano-silica particles. The nano-silica/polyacrylate composite latex film had better thermal stability, and the composite latex particles had greater average size and broader size distribution in contrast to those of pure polyacrylate emulsions.  相似文献   

13.
Poly(lactic acid) (PLA) composites containing 5 wt% synthetic (type 4A) and natural (chabazite) zeolites were prepared using extrusion/injection molding. Morphological, structural, and thermal properties of composites were investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). DSC results revealed that the glass transition and melting temperatures were not significantly changed; however, the incorporation of both type 4A and chabazite zeolites enhanced the nucleation of PLA crystallites as well as increased the percent crystallinity. Thermal degradation properties of PLA and PLA/zeolite composites were studied by non-isothermal thermogravimetric analysis (TGA) in nitrogen atmosphere. TGA results showed that at temperatures above 300 °C, PLA/type 4A synthetic zeolite composites were thermally decomposed more easily than the PLA and PLA/chabazite natural zeolite composites. The apparent activation energies of thermal degradation of PLA and PLA/zeolites composites estimated using both the Flynn-Wall-Ozawa and Kissinger methods followed the same order: PLA/type 4A < PLA/chabazite < PLA.  相似文献   

14.
以竹粉(bamboo flour,BF)为生物质填料,乙酰柠檬酸丁酯(acetyl tributyl citrate,ATBC)为增韧剂,通过与聚乳酸(polylactic acid,PLA)熔融共混制备了BF/PLA增韧复合材料,并采用红外光谱、热重分析、转矩流变仪、扫描电镜及力学性能测试等考察了ATBC添加对BF/PLA复合材料结构与性能的影响。结果表明,ATBC可改善BF/PLA复合材料的加工流变性,降低复合材料玻璃化转变温度、冷结晶温度及熔融温度,但对复合材料的热稳定性没有影响。FTIR分析显示,ATBC的加入可使BF/PLA复合材料C—O红外吸收峰位增大,表明ATBC与PLA之间存在一定相互作用。当ATBC用量为15%时,BF/PLA复合材料断裂伸长率由增韧前的8.1%增加到35.6%,提高了339.5%。SEM图片显示,此时复合材料断面粗糙,表现出韧性断裂形貌。该研究结果可为进一步探索增韧竹纤维/聚乳酸复合材料制备及应用,提供试验数据和理论参考。  相似文献   

15.
In this work, the producing of a biodegradable poly(l-lactide) (PLA)/poly(ethylene glycol) (PEG) microcapsule by emulsion solvent evaporation method was investigated. The effect of PEG segments added to the PLA microcapsules on the degradation, size distribution, and release behavior was studied. According to the results, PLA/PEG copolymer was more hydrophilic than PLA homopolymer, and with lower glass transition temperature. The surface of PLA/PEG microcapsules was not as smooth as that of PLA microcapsules, the mean diameters of prepared PLA and PLA/PEG microcapsules were 40 and 57 microm, respectively. And spherical forms were observed by the image analyzer and the scanning electron microscope (SEM). Drug release from microcapsules was affected by the properties of PLA/PEG copolymers determined by UV-vis spectra. It was found that the drug release rates of the microcapsules were significantly increased with adding of PEG, which explained by increasing hydrophilic groups.  相似文献   

16.
Biodegradable composite films of poly(lactic acid) (PLA)/eggshell powder (ESP) were prepared by the composite film casting method using chloroform as the solvent. ESP was loaded in PLA in 1 to 5 wt.%. The films were subjected to tensile, FT-IR spectral, thermogravimetric, X-ray, and microscopic analyses. The tensile strength and modulus of the composite films were found to be higher than those of PLA and increased with ESP content up to 4 wt.% and then decreased. A reverse trend was observed in the case of percentage elongation at break. The X-ray diffractograms of the composite films indicated an increase in crystallinity with ESP content. The optical micrographs indicated uniform distribution of ESP particles in the composite films. However, the fractographs indicated agglomeration of ESP particles at 5 wt.% loading. The FT-IR spectra revealed no specific interactions between PLA and ESP. The thermal stability of the composite films increased with ESP content.  相似文献   

17.
Starting from calcium sulfate (gypsum) as fermentation by‐product of lactic acid production process, high performance composites have been produced by melt‐blending polylactide (PLA, L/D isomer ratio of 96:4) and β‐anhydrite II (AII) filler, that is, calcium sulfate hemihydrate previously dehydrated at 500 °C. Characterized by attractive mechanical and thermal properties due to good filler dispersion throughout the polyester matrix, these composites are interesting for potential use as biodegradable rigid packaging. Physical characterization of selected composites filled with 20 and 40 wt % AII has been performed and compared to processed unfilled PLA with similar amorphous structure. State of dispersion of the filler particles and interphase characteristic features have been investigated using light microscopy (LM) and scanning electron microscopy (SEM). Addition of AII did not decrease PLA thermal stability as revealed by thermogravimetry analyses (TGA) and allowed reaching a slight increase of PLA crystallizability during melt crystallization and upon heating from the glassy, amorphous state (DSC). It was found by thermomechanical measurements (DMTA) that the AII filler increased pronouncedly storage modulus (E′) of the composites in comparison with PLA in a broad temperature range. The X‐ray investigations showed stable/unchanged crystallographic structure of AII during processing with molten PLA and in the composite system. The notable thermal and mechanical properties of PLA–AII composites are accounted for by the good filler dispersion throughout the polyester matrix confirmed by morphological studies, system stability, and favorable interactions between components. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2770–2780, 2007  相似文献   

18.
《先进技术聚合物》2018,29(8):2192-2203
Fulvic acid amide (FAA) was synthesized with fulvic acid (FA) and urea. The structure of FAA was characterized by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Poly(lactic acid)/fulvic acid amide (PLA/FAA) composites were prepared by melt blending and compression molding. The nucleation effect of FAA on PLA was investigated by differential scanning calorimetry and polarized optical microscopy. Structure‐property relationship of PLA/FAA composites showed that FAA accelerated crystallization rate of PLA and improved toughness of PLA. Rotational rheological behavior of PLA/FAA composites showed that FAA increased the storage modulus of PLA. Capillary rheological analysis showed that the apparent viscosities of PLA composites were highly increased after the introduction of the FAA nucleating agent. Moreover, thermogravimetric analysis demonstrated that thermal degradability of PLA/FAA composites has been increased significantly compared with the neat PLA.  相似文献   

19.
《高分子科学》2019,37(12):1273-1282
Polylactide(PLA), methyl methacrylate-butadiene-styrene copolymer(MBS), and poly(propylene carbonate) polyurethane(PPCU) were blended and subjected to blown film process. The rheological, mechanical, morphological, thermal, and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied. Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA. The impact strength of 50/10/40 PLA/MBS/PPCU blend(74.7 k J/m~2)was about 7.5 times higher than that of the neat PLA(10.8 k J/m~2), and the elongation at break of 50/10/40 PLA/MBS/PPCU blend(276.5%) was higher by about 45 times that of PLA(6.2%). The tear strength of PLA/MBS/PPCU films was 20 k N/m higher than that of PLA, and the elongation at break(MD/TD) of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%, whereas that of PLA was only 2.7%/3.0%. POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS. With increasing PPCU content from 5% to 20%, the density of spherulite nucleation increased and the size of crystalline particles decreased continuously, but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30% to 40%. The PLA/MBS/PPCU films exhibited excellent mechanical properties, which expanded the application range of these biodegradable films.  相似文献   

20.
Chitin nanofibers extracted from crab shell were used to reinforce polylactic acid (PLA) by extrusion molding. The dispersion problem of nanofibers in PLA matrix was solved by three pretreatment methods, including water pretreatment, polyethylene glycol (PEG) pretreatment, and polyethylene oxide (PEO) pretreatment. The results demonstrated that chitin nanofibers were distributed uniformly on the fracture surface of the PLA matrix with three different pretreatment methods. However, the aspect ratio of nanofibers with was reduced with the PEG and PEO pretreatment methods. Therefore, the bending modulus (MOE), bending strength (MOR) and impact toughness of the chitin nanofibers/PLA composites prepared by the water pretreatment method were much higher than those of the composites prepared by the PEG and the PEO pretreatment method. Furthermore, the reinforcing effect with the PEG method is slightly better than that with the PEO method. Although it was found that both PEG and PEO were good interfacial compatibilizers for nanofibers and PLA, the reinforcing effect of the composites prepared by PEG and PEO pretreat methods was suppressed due to the decrease of the aspect ratio for chitin nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号