共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
以苯基缩水甘油醚(PGE)和丙烯酸(AA)为原料,三苯基膦为催化剂,4-甲氧基苯酚为抑制剂,合成了一种新型光敏预聚物苯基缩水甘油醚丙烯酸酯(PGEA)。然后用十六烷基三甲基溴化铵处理纳米SiO2,并用硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)进行表面改性,并加入到预聚物PGEA中,制成紫外纳米复合涂层。用扫描电子显微镜(SEM)发现涂层含量小于5%时,改性纳米SiO2的分散效果较好。用扫描原子力显微镜(AFM)观察到固化膜表面光滑。而适量的改性纳米SiO2可以提高紫外光固化材料的拉伸强度、伸长率和冲击强度。 相似文献
4.
本文以苄基缩水甘油醚和丙烯酸为原料合成活性稀释剂苄基缩水甘油醚丙烯酸酯(BGEA),研究了反应温度、催化剂和阻聚剂用量对反应的影响.结果表明最佳的反应条件为:反应温度110℃左右,催化剂N,N’-二甲基苄胺质量分数为0.9%,阻聚剂对甲氧基苯酚质量分数为0.2%.后将BGEA作为稀释剂加入到双酚A型环氧丙烯酸树脂中配制成光固化涂料,利用TG、AFM等表征手段对光固化膜的热性能、表面形貌及物理机械性能进行研究. 相似文献
5.
以苯基缩水甘油醚、邻甲基酚缩水甘油醚及苯甲基缩水甘油醚(1~3)和β-环糊精为原料, 分别在弱碱水溶液(1.5%)和强碱水溶液(30%)中制备出系列缩水甘油醚类β-环糊精衍生物, 所得产物用自制硅胶色谱柱分离, 以V(正丙醇)∶V(水)∶V(浓氨水)=6∶3∶1作为硅胶色谱柱分离纯化的洗脱剂, 得到单2位取代的苯氧基(或邻甲基苯氧基或苯甲氧基-2-羟丙基-β-环糊精(1a~3a)和单6位取代的苯氧基(或邻甲基苯氧基)-2-羟丙基-β-环糊精(1b~2b). 所得产品用薄层色谱、红外光谱、质谱和核磁共振波谱等手段进行了表征. 相似文献
6.
Abstract A novel and facile synthesis of aromatics containing di- and tetrafunctional propenyl ether monomers is reported. These monomers were prepared by the base-catalyzed condensation of allyl glycidyl ether with a variety of bisphenols followed by allylation of the secondary hydroxyl groups and finally isomerization of the allyl groups by a ruthenium catalyst. The cationic photopolymerization of these novel monomers to give crosslinked network polymers was carried out using a diaryliodonium salt photoinitiator. The reactivity of the multifunctional propenyl ether monomers was studied using real-time infrared spectroscopy and by differential scanning photocalorimetry. 相似文献
7.
Benzyl phenyl ether is prepared in a well-stirred batch reactor from phenol and benzyl chloride using tetrabutylammonium iodide as phase transfer catalyst. Phenol with sodium hydroxide is dissolved in water as the aqueous phase, and benzyl chloride is dissolved in toluene as the organic phase. Tetrabutylammonium iodide gives high reaction rate without the formation of micelles during the reaction. The reaction mechanism is verified by infrared spectrum study and other experimental observations. The kinetics of the reaction of benzyl chloride is modelled as a first-order chemical reaction. The cocatalytic effect of the iodide ion, and salting out effect on the overall reaction rate are discussed in detail using experimental data. 相似文献
8.
通过脱氢枞醇聚氧乙烯(10)醚(DA(EO)10H)与环氧氯丙烷缩合后,再在NaOH存在下脱氯化氢得到脱氢枞氧基聚氧乙烯(10)缩水甘油醚(DA(EO)10GE),然后通过DA(EO)10GE对羟乙基壳聚糖(HECTS)的接枝制备DA(EO)10GE接枝羟乙基壳聚糖(DA(EO)10GE-g-HECTS),最后利用Genipin对DA(EO)10GE-g-HECTS进行交联,得到DA(EO)10GE-g-HECTS/Genipin水凝胶。研究结果表明:DA(EO)10GE对HECTS糖单元摩尔比的增加能提高DA(EO)10GE-g-HECTS的接枝度,并延长其与Genipin交联形成凝胶的时间;增加Genipin的用量可提高接枝产物与Genipin交联形成凝胶的能力;负载于DA(EO)10GE-g-HECTS/Genipin凝胶中的氯霉素在人工肠液中的累积释放率与时间的关系,可以很好地用Boltzmann函数描述,且提高接枝度和降低Genipin用量有利于提高药物的最终累积释放率;低接枝度DA(EO)10GE-g-HECTS经Genipin交联形成的载药凝胶,其药物释放行为符合一级动力学方程的特征。 相似文献
9.
The synthesis of propargyl‐functional poly(carbonate)s with different content of glycidyl propargyl ether (GPE) units is achieved via the copolymerization of propargyl glycidyl ether and carbon dioxide. A new type of functional poly(carbonate) synthesized directly from CO2 and the glycidyl ether is obtained. The resulting polymers show moderate polydispersities in the range of 1.6–2.5 and molecular weights in the range of 7000–10 500 g mol−1. The synthesized copolymers with varying number of alkyne functionalities and benzyl azide are used for the copper‐catalyzed Huisgen‐1,3‐dipolar addition. Moreover, the presence of vicinal alkyne groups opens a general pathway to produce functional aliphatic poly(carbonate)s from a single polymer scaffold.
10.
Jung‐Dae Cho Hyoung‐Tae Ju Jin‐Who Hong 《Journal of polymer science. Part A, Polymer chemistry》2005,43(3):658-670
We used photodifferential scanning calorimetry to investigate the photocuring kinetics of UV‐initiated free‐radical photopolymerizations of acrylate systems with and without silica nanoparticles. Two kinetics parameters—the rate constant (k) and the order of the initiation reaction (m)—were determined for hybrid organic–inorganic nanocomposite systems containing different amounts of added silica nanoparticles (0–20 wt %) and at different isothermal temperatures (30–100 °C) using an autocatalytic kinetics model. The kinetic analysis revealed that the silica nanoparticles apparently accelerate the cure reaction and cure rate of the UV‐curable acrylate system, most probably due to the synergistic effect of silica nanoparticles during the photopolymerization process. However, a slight decrease in polymerization reactivity that occurred when the silica content increased beyond 15 wt % was attributed to aggregation between silica nanoparticles. We also observed that the addition of silica nanoparticles lowered the activation energy for the UV‐curable acrylate system, and that the collision factor for the system with silica nanoparticles was higher than that obtained for the system without silica nanoparticles, indicating that the reactivity of the former was greater than that of the latter. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 658–670, 2005 相似文献
11.
Abstract The cationic photopolymerization of a new biorenewable monomer, glycerol tripropenyl ether, was carried out to determine whether it is suitable for use in such thin film applications as photocurable inks, coatings, and adhesives. Studies of the photoinduced homopolymerization of this monomer and its copolymerizations with other mono- and difunctional propenyl ethers were conducted in the presence of diaryliodonium and triarylsulfonium salt initiators. The dependence of such properties as the gel fraction, hardness, impact, and adhesion of model coatings upon the structure and composition of the monomers used and on UV irradiation dose and postcure were investigated. 相似文献
12.
E. W. Nelson A. B. Scranton 《Journal of polymer science. Part A, Polymer chemistry》1996,34(3):403-411
In situ Raman spectroscopy experiments were used to determine effective kinetic propagation constants for a series of unsteady-state divinyl ether polymerizations at different isothermal temperatures and light intensities. Raman spectroscopy was found to be ideally suited for monitoring cationic photopolymerizations because the technique allows isothermal experiments to be performed with excellent time resolution and allows several spectral features to be observed simultaneously. In addition, the Raman experiments provided direct information about the vinyl bond concentration in situ as the reaction takes place. For these cationic photopolymerizations, the reaction rate and limiting conversion were both found to increase as the reaction temperature was increased. At all temperatures, the profile for the propagation rate constant, kp, exhibited a dramatic increase at the start of the reaction, plateaued at a value between 10 and 40 l/mol s (depending upon temperature), and then decreased as the reaction reached a limiting conversion due to trapping of the active centers. Finally, the overall activation energy for polymerization was found to be 25.1 ± 6.1 kJ/mol. © 1996 John Wiley & Sons, Inc. 相似文献
13.
Naveed Ahmad Khan Muhammad Sulaiman Carlos Andrs Tavera Romero Fawaz Khaled Alarfaj 《Molecules (Basel, Switzerland)》2021,26(19)
In this paper, we analyzed the mass transfer model with chemical reactions during the absorption of carbon dioxide (CO) into phenyl glycidyl ether (PGE) solution. The mathematical model of the phenomenon is governed by a coupled nonlinear differential equation that corresponds to the reaction kinetics and diffusion. The system of differential equations is subjected to Dirichlet boundary conditions and a mixed set of Neumann and Dirichlet boundary conditions. Further, to calculate the concentration of CO, PGE, and the flux in terms of reaction rate constants, we adopt the supervised learning strategy of a nonlinear autoregressive exogenous (NARX) neural network model with two activation functions (Log-sigmoid and Hyperbolic tangent). The reference data set for the possible outcomes of different scenarios based on variations in normalized parameters are obtained using the MATLAB solver “pdex4”. The dataset is further interpreted by the Levenberg–Marquardt (LM) backpropagation algorithm for validation, testing, and training. The results obtained by the NARX-LM algorithm are compared with the Adomian decomposition method and residual method. The rapid convergence of solutions, smooth implementation, computational complexity, absolute errors, and statistics of the mean square error further validate the design scheme’s worth and efficiency. 相似文献
14.
A copolymerizable one‐component Type II photoinitiator (CMEBP), based on 4‐hydroxybenzophenone (HBP), epichlorohydrin, morpholine, and acryloyl chloride, was synthesized and its structure was confirmed by 1H‐NMR. The properties of CMEBP were investigated with UV spectroscopy and photo‐differential scanning calorimetry (photo‐DSC). The maximum of UV absorption red‐shifted significantly compared to benzophenone (BP). Photopolymerization results of tripropylene glycol diacrylate (TPGDA) indicated that CMEBP had larger maximum rate of polymerization than that of BP/triethanolamine (TEOHA) and HBP/triethylamine (TEA), larger final double bond conversion than that of HBP/TEA, but lower than that of BP/TEOHA. The rate of polymerization, final conversion increased and the induction period shortened with increase in CMEBP concentration. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
The 3‐miktoarm star‐shaped ABC copolymers of polystyrene–poly(ethylene oxide)–poly(ethoxyethyl glycidyl ether) (PS‐PEO‐PEEGE) and polystyrene–poly(ethylene oxide)–polyglycidol (PS‐PEO‐PG) with low polydispersity indices (PDI ≤ 1.12) and controlled molecular weight were synthesized by a combination of anionic polymerization with ring‐opening polymerization. The polystyryl lithium (PS−Li+) was capped by EEGE firstly to form the functionalized polystyrene (PSA) with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, and then the PS‐b‐PEO block copolymers, star(PS‐PEO‐PEEGE) and star(PS‐PEO‐PG) copolymers were obtained by the ring‐opening polymerization of EO and EEGE respectively via the variation of the functional end group, and then the hydrolysis of the ethoxyethyl group on the PEEGE arm. The obtained star copolymers and intermediates were characterized by 1H NMR spectroscopy and SEC.
16.
J. V. Crivello Whan-Gi Kim 《Journal of polymer science. Part A, Polymer chemistry》1994,32(9):1639-1648
The ambifunctional monomer, 1-propenyl glycidyl ether, was prepared from allyl glycidyl ether, by a ruthenium-catalyzed isomerization reaction in high yield. 1-Propenyl glycidyl ether undergoes facile photoinduced cationic polymerization to yield a crosslinked polymer. The structure of this polymer was studied using 1H- and, 13C-NMR spectroscopies and employing well-characterized related polymers as models. The model polymers were prepared by the cationic polymerization of allyl glycidyl ether with BF3OEt2 followed by isomerization of the pendant allyl groups by a ruthenium catalyst. Subsequently, the resulting polyether-bearing pendant 1-propenyl ether groups was subjected to a diaryliodonium salt-photoinitiated polymerization. A comparison of the spectra of the polymers indicated the presence of cyclic acetal units in the polymer backbone. © 1994 John Wiley & Sons, Inc. 相似文献
17.
含硅乙烯基醚单体的合成及光聚合反应 总被引:1,自引:0,他引:1
本文采用含氯硅烷或硅氧烷与含羟基的单乙烯基醚的取代反应合成了8种含硅乙烯基醚单体,并研究了它们的物理化学性质和光聚合反应过程. 该合成反应过程简单、产率高,是合成含硅乙烯基醚单体的有效方法. 性质研究表明6种单体黏度合适,6种单体热稳定性好;光聚合反应研究表明,随着引发剂浓度(< 2.4wt %时)增加,单体聚合反应速率随之增大. 双官能度的单体在聚合速率和诱导期上表现整体优于单官能度单体. 含硅乙烯基醚单体的固化速率非常快,可以通过增加产酸剂浓度或光强来提高双键转化率. 相似文献
18.
XU Si-yu ZHAO Feng-qi YI Jian-hua GAO Hong-xu SHAO Zi-qiang HAO Hai-xia HU Rong-zu PEI Qing 《高等学校化学研究》2012,28(3):516-519
The thermal behavior, nonisothermal decomposition reaction kinetics and specific heat capacity of nitrate glycerol ether cellulose(NGEC) were determined by thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and microcalorimetry. The apparent activity energy(Ea), reaction mechanism function, quadratic equation of specific heat capacity(Cp) with temperature were obtained. The kinetic parameters of the decomposition reaction are Ea=170.2 kJ/mol and lg(A/s–1)=16.3. The kinetic equation is f(α)=(4/3)(1–α)[–ln(1–α)]1/4. The specific heat capacity equation is Cp=1.285–6.276×10–3T+1.581×10–5T2(283 KSADT), critical temperature of thermal explosion(Tb) and adiabatic time-to-explosion(tTlad). The results of the thermal safety evaluation of NGEC are: TSADT=459.6 K, Tb=492.8 K, tTlad=0.8 s. 相似文献
19.
Guodong Liu Bin Zhao Xiaofang Zhou Jiaxi Wang Jungang Gao Xiongwei Qu Liucheng Zhang 《Macromolecular theory and simulations》2006,15(4):339-346
Summary: The curing kinetics of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) was analyzed using isothermal differential scanning calorimetry (DSC) modes by using a simple mechanistic model which includes two rate constants, k1 and k2, two reaction orders, n1 and n2, and the ratio of initial concentration of hydroxyl group to initial epoxy concentration, c0. Analyses of DSC data indicated that an autocatalytic reaction existed in the curing process. The mechanistic model proposed in this paper fits the experimental data exactly. Rate constants, k1 and k2 have been found to increase with rising curing temperature. The activation energies for the relative reactions were determined to be 66.00 ± 4.21 and 50.74 ± 8.92 kJ/mol, respectively. The complex equivalent constant, K, decreased with increasing temperature. Diffusion control was incorporated to describe the cure in the latter stages.
20.
以三氟化硼乙醚络合物为催化剂,以氢氧化钠为成环反应的闭环剂,利用乙二醇和环氧氯丙烷为原料合成了乙二醇二缩水甘油醚.研究了催化剂三氟化硼乙醚络合物用量、环氧氯丙烷和乙二醇摩尔比、氢氧化钠和乙二醇摩尔比,以及成环反应温度这些因素对合成反应的影响.结果表明较好的合成反应条件是:三氟化硼乙醚络合物质量分数为0.40%,环氧氯丙烷和乙二醇较佳摩尔比为2.4:1,氢氧化钠和乙二醇较佳摩尔比为2.2:1,较佳的成环反应温度为30℃.同时,把乙二醇二缩水甘油醚作为稀释剂加入到环氧树脂E-51中,利用三芳基锍鎓六氟锑酸盐作为引发剂,制备了阳离子型紫外光固化涂料,其紫外光固化膜的拉伸强度为46.25MPa,杨氏模量为1487.26MPa,断裂伸长率为6.27%. 相似文献