首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allyl methacrylate was polymerized in CCl4 solution by α,α′‐azoisobutyronitrile at 50, 60, and 70°C. The kinetic curves were auto‐accelarated types at 60 and 70°C, but almost linear at 50°C. Arrhenius activation energy was 77.5 kJ/mol. The polymer was insoluble in common organic solvents. It was characterized by FT‐IR, NMR, DSC, TGA and XPS methods. About 98–99% of allyl side groups were remained as pendant even after completion of the polymerization. The spectroscopic and thermal results showed that polymerization is not a cyclopolymerization type, but may have end group cyclization. The high molecular weight is the main cause of a polymer being insoluble even in the early stage of the polymerization. Molecular weight of 1.1×106 for a soluble polymer fraction was measured by light scattering method. The Tg of polymer was 94°C, and after curing at 150–200°C, increased to 211°C. The thermal pyrolysis of polymer at about 350°C gave an anhydride by linkage type degradation, and side group cyclization. The XPS analysis showed the presence of radical fragments of AIBN (initiator) and CCl4 (solvent) associated with oligomers.  相似文献   

2.
A novel hydroxyl‐ethynyl‐arene (HEA) resin was synthesized via Aldol condensation and Sonogashira reaction. The structure of the obtained resin was confirmed by the techniques of mass spectroscopy (MS), gel permeation chromatography (GPC), proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier transform infrared spectroscopy, (FT‐IR) and elemental analysis (EA). Differential scanning calorimetry (DSC) results showed an exotherm at the temperature range of 187°C–245°C, attributable to crosslinking reaction of the acetylene groups. After thermal cure, the obtained cured resin possessed excellent thermal stability. Thermal gravimetric analysis (TGA) in nitrogen showed the Td5 (temperature of 5% weight loss) was about 400°C, and the char yield in nitrogen was about 78% at 900°C. The laminate composite of HEA resin was prepared and its mechanical and thermal properties were determined. The usefulness of the HEA resin as matrix for ablative composite was evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
There is widespread interest in responsive polymers that show cloud point behavior, but little attention is paid to their solid state thermal properties. To manufacture products based on such polymers, it may be necessary to subject them to high temperatures; hence, it is important to investigate their thermal behavior. In this study, we characterized a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers. Although poly(N‐isopropylacrylamide) shows very high thermal stability (up to 360 °C), introduction of hydroxy side chains leads to a significant reduction in stability and new degradation processes become apparent. Thermogravimetric analysis and fourier transform infrared spectroscopy (FT‐IR) indicate that the first degradation process involves a chemical dehydration step (110–240 °C), supported by the nonreversing heat flow response in modulated temperature differential scanning calorimetry. Water loss scales with the fraction of hydroxy monomer in the copolymer. Glass transition temperatures (Tg) are higher than the temperatures causing dehydration; hence, these values relate to newly‐formed copolymer structures produced by controlled heating under nitrogen. Fourier transform‐Raman (FT‐Raman) spectra suggest that this transition involves imine formation. The Tg increases as the fraction of hydroxy groups in the original copolymer increases. Further heating leads to degradation and mass loss, and more complex changes in the FT‐IR spectra, consistent with formation of unsaturated species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.

New methacrylic monomer having free radical polymerizable methacryloyl group and photocrosslinkable functional group was synthesized by reacting hydroxyl chalcone with methacryloyl chloride. The monomer was homopolymerized in methyl ethyl ketone solvent using benzoyl peroxide as an initiator at 70°C. The prepared homopolymer was characterized by UV, FT‐IR, 1H‐NMR and 13C‐NMR spectra. The molecular weights (Mw and Mn) were estimated by gel permeation chromatography. The thermal stability of the polymer was measured by thermogravimetric analysis. The glass transition temperature of the polymer was determined by differential scanning calorimetry. The photocrosslinking property of the polymer was also studied.  相似文献   

5.
This paper reports a non‐catalyzed environmentally friendly method of synthesizing hyperbranched polymethylvinylborosiloxanes (PMVBSs) and their use to improve the thermal stability of normal addition‐curable silicones (ACSs). PMVBSs were synthesized by the direct polycondensation of dimethoxymethylvinylsilane with boric acid at 80–130°C in 1,4‐dioxane or diglyme. They were characterized by gel permeation chromatography; FT‐IR; 1H, 13C, 29Si and 11B NMR; and TGA. PMVBSs were composed of Si―O―Si and Si―O―B bridges with some unreacted B―OH groups remaining, and had a ceramic yield up to 65.97% at 900°C. PMVBS‐modified ACSs (PBS‐ACSs) were prepared by curing the PMVBSs with hydrogen‐containing silicone oil under Karstedt (platinum divinyltetramethyldisiloxane) catalysis. Thermal stability of PBS‐ACSs was characterized by TGA in N2 or air, and ceramic yields as high as 76.7% were obtained. Gas decomposition during the ceramization of PBS‐ACSs was examined by TG/mass spectroscopy. The SiBOC ceramics formed were characterized by FT‐IR, Raman, 29Si and 11B magic angle spinning NMR and elemental analysis. This method provides a valuable way to improve the thermal stability of ACSs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of the degree of grafting (DOG) on the thermal behavior of poly(vinylbenzyl chloride)‐grafted poly(ethylene‐co‐tetrafluoroethylene) (ETFE‐g‐PVBC) films was investigated by differential scanning calorimetry (DSC), X‐ray diffraction (XRD), dynamic mechanical analysis ( DMA), FT‐IR, and thermogravimetric analysis (TGA) instruments. Several ETFE‐g‐PVBC films with various degrees of grafting, including 10, 24, 41, 60, and 94%, were prepared using a radiation grafting technique. The DSC and XRD results of the ETFE‐g‐PVBC films revealed that the crystallinity of the films decreased as the DOG increased. The DMA and FT‐IR results of the films indicated that a crosslinking reaction occurred at temperatures above 250 °C. In the thermal properties of the grafted films, an increase in the DOG led to an increase in the decomposition temperature. The activation energy (Ea) of the thermal decomposition was calculated using Kissinger's equation from TGA results. The Ea value of the PVBC graft chain was found to increase as the DOG increased, indicating that the crosslinking reaction of ETFE‐g‐PVBC films increased with an increase in the DOG during the thermal degradation process. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 517–525  相似文献   

7.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

8.

The homo‐ and copolymers via atom transfer radical (co)polymerization (ATRP) of phenacyl methacrylate (PAMA) with methyl methacrylate (MMA) and t‐butyl methacrylate (t‐BMA) was performed in bulk at 90°C in the presence of ethyl 2‐bromoacetate, cuprous(I)bromide (CuBr), and 2,2′‐bipyridine. The polymerization of PAMA was carried out at 70, 80, and 100°C. Also, free‐radical polymerization of PAMA was carried out at 60°C. Characterization using FT‐IR and 13C‐NMR techniques confirmed the formation of a five‐membered lactone ring through ATRP. The in situ addition of methylmethacrylate to a macroinitiator of poly(phenacyl methacrylate) [Mn=2800, Mw/Mn=1.16] afforded an AB‐type block copolymer [Mn=13600, Mw/Mn=1.46]. When PAMA units increased in the living copolymer system, the Mn values and the polydispersities were decreased (1.1<Mw/Mn<1.79). The monomer reactivity ratios were computed using Kelen‐Tüdös (K‐T), Fineman‐Ross (F‐R) and Tidwell‐Mortimer (T‐M) methods and were found to be r1= 1.17; r2= 0.76; r1=1.16; r2=0.75 and r1=1.18; r2=0.76, respectively (r1=is monomer reactivity ratio of PAMA). The initial decomposition temperatures of the resulting copolymers were measured by TGA. Blends of poly(PAMA) and poly(MMA) obtained via the ATRP method have been characterized by differential thermal and thermogravimetric analyses.  相似文献   

9.
Summary: Pyrolysis‐GC‐MS and TGA‐FT‐IR methods have been used to perform a comparative degradation study of polystyrene and a polystyrene–clay composite. An abnormally high yield of α‐methylstyrene has been detected for the composite. This and other differences in degradation products have been explained by enhanced intermolecular interaction of the grafted PS chains, forming a brush structure. A conceptual model of the process has been suggested.

GC pyrograms of virgin PS (A) and PS–clay composite (B) pyrolyzed at 500 °C (1: styrene; 2: 2,4‐diphenylbut‐1‐ene; 2′: dimer derivatives; 3: 2,4,6‐triphenylhex‐1‐ene; 3′: trimer derivatives; 4: α‐methylstyrene).  相似文献   


10.

Electrophilic trisubstituted ethylene monomers, alkyl ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 2‐methyl, 3‐methyl,4‐methyl, 4‐ethyl, 4‐isopropyl, 4‐butyl, and 4‐t‐butyl), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High Tg of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–700°C range.  相似文献   

11.
Octaphenylsilsesquioxane (PH‐POSS) and octa(γ‐methacryloxypropyl)silsesquioxane (MA‐POSS) were successfully synthesized by hydrolytic condensation of phenyltrichlorosilane and γ‐methacryloxypropyltrimethoxysilane, and characterized by Fourier transform infrared (FT‐IR), 1H and 29Si nuclear magnetic resonance (NMR), and matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrum. Morphology, degradation behavior, thermal, and mechanical properties of hybrid composites were studied by transmission electron microscopy (TEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), surface contact angle (SCA), tensile, and impact testing. Domains of PH‐POSS and MA‐POSS dispersed in the matrix with a wide size distribution in a range of 0.1–0.5 µm, while PH‐POSS exhibited a preferential dispersion. Because of the possible homopolymerization of MA‐POSS during the melt blending, the glass transition temperature of polycarbonate (PC)/MA‐POSS composites remained nearly unchanged with respect to PC/PH‐POSS composites that showed a depression of Tg due to the plasticization effect. It is interesting to note that the incorporation of POSS retarded the degradation rates of PC composites and thus significantly improved the thermal stabilities. Si? O fractions left during POSS degradations were a key factor governing the formation of a gel network layer on the exterior surface. This layer possessed more compact structures, higher thermal stabilities, and some thermal insulation. In addition, percentage residues at 700°C (C700) significantly increased from 10.8% to 15.8–22.1% in air. Fracture stress of two composites showed a slight improvement, and the impact strength of them decreased monotonically with the increase of POSS loading. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A phosphorus and silicon containing liquid monomer (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide–vinyltrimethoxysilane (DOPO–VTS)) was synthesized by the reaction between DOPO and VTS. DOPO–VTS and methacryloxypropyltrimethoxylsilane were introduced into unsaturated polyester resin to prepare flame retardant UPR/SiO2 (FR‐UPR/SiO2) hybrid materials by sol–gel method and curing process. DOPO–VTS contributes excellent flame retardancy to UPR matrix, which was confirmed by the limiting oxygen index and microscale combustion calorimeter results. The thermogravimetric analysis (TGA) results indicate that the FR‐UPR/SiO2 hybrid materials possess higher thermal stability and residual char yields than those of pure UPR at high temperature region. The thermal degradation of materials was investigated by TGA/infrared spectrometry (TG‐IR) and real‐time infrared spectrometry (RT‐IR), providing insight into the thermal degradation mechanism. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) were used to explore the morphologies and chemical components of the residual char. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Thermal decomposition of Ce(ClO4)3 ? 9H2O and Ce(ClO4)3 to give cerium(IV) dioxide in the temperature range 240–460°C was studied by DSC–TGA, X-ray powder diffraction, IR and mass spectroscopy. The thermolysis of these salts was shown to proceed through the stage of formation of intermediate product supposedly cerium oxoperchlorate. The thermal decomposition of cerium(III) perchlorate hydrate at 460°C leads to formation of nanocrystalline cerium dioxide with particle size of 13 nm.  相似文献   

14.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 2‐methoxy, 3‐methoxy, 4‐methoxy, 4‐ethoxy, 4‐propoxy, and 4‐butoxy), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 290–450°C range.  相似文献   

15.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 3‐benzyloxy, 4‐benzyloxy, 3‐ethoxy‐4‐methoxy, 3‐bromo‐4‐methoxy, 5‐bromo‐2‐methoxy, 2‐chloro‐6‐fluoro) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

16.

Electrophilic trisubstituted ethylene monomers, akyl and alkoxy ring‐trisubstituted methyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H2CH[dbnd]C(CN)CO2CH3, (where R is 2,3‐dimethyl‐4‐methoxy, 2,5‐dimethyl‐4‐methoxy‐, 2,3,4‐trimethoxy‐, 2,4,5‐trimethoxy, 2,4,6‐trimethoxy, and 2,4‐dimethoxy‐3‐methyl), were synthesized by the piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 283–306°C range.  相似文献   

17.

Electrophilic trisubstituted ethylene monomers, halogen ring‐disubstituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H3CH?C(CN)CON(CH3)2 (where R is 2,3‐dichloro, 2,4‐dichloro, 2,6‐dichloro, 3,4‐dichloro, 3,5‐dichloro, 2,3‐difluoro, 2,4‐difluoro, 2,6‐difluoro, 3,4‐difluoro, 3,5‐difluoro), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

18.
Novel A2B2‐type energetic miktoarm star‐shaped copolymers composed of two PGN arms and two PCL arms was synthesized by the combination of ring‐opening polymerization (ROP) and “click” chemistry. Initially, diazido end‐functionalized two‐arm PGN, (PGN)2‐(N3)2, was synthesized by ROP of glycidyl nitrate monomers. Subsequently, (PGN)2‐(PCL)2 was obtained from the click reaction between diazido end‐functionalized (PGN)2‐(N3)2 polymers and propargyl‐terminated poly(ε‐caprolactone) (PTPCL). This star copolymer solves problems of PCL (lake of energy) and PGN (low Tg). The Fourier‐transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) studies revealed that (PGN)2‐(PCL)2 was successfully obtained. The thermal behavior of star polymer was investigated by thermogravimetric analysis (TGA) and derivative thermogravimetry. The results show that (PGN)2‐(PCL)2 decomposed at two stages. The first stage is seen at 212.6°C which related to degradation of –ONO2 group and second stage attributed to degradation of PCL group which is seen at 346.1°C.  相似文献   

19.
Magnetic nanoparticles (MNPs) are of great interest owing to their numerous existing and potential biomedical applications. To further explore the potential of MNPs in biomedical and other fields, we have designed and synthesized polyvinyl alcohol (PVA) polymer grafted Fe3O4 MNPs through glutaraldehyde (GLA) link. The success of this process has been ascertained using Fourier transform infrared (FT‐IR) analysis, thermogravimetric analysis (TGA), X‐ray diffraction (XRD) analysis and scanning electron microscopy (SEM) analysis. The FT‐IR analysis of resultant MNPs show infrared peak characteristics of PVA. TGA analysis clearly shows two major stages of thermal degradation, one corresponding to organic phase of PVA and GLA and another corresponding to Fe3O4 nanoparticles. XRD results and SEM images further support the FT‐IR and TGA results and confirm the presence of PVA layer surrounding Fe3O4 MNP surface. Under SEM examination, the magnetic cores exhibit somewhat irregular shapes varying from spherical, to oval to cubic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A new diamine monomer was synthesized by the Michael addition of 4,4′‐methylene dianiline with 1,4‐benzoquinone. The monomer was condensed with 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride to give a polyamic acid that was soluble in NMP. The polyamic acid was cast onto iron and thermally imidized to yield the amine–quinone polyimide (AQPI‐2). AQPI‐2 had a thermal decomposition temperature of 540 °C (10% TGA weight loss in N2) and a glass transition at 292 °C, values typical of polyimides. The degradation of the coating on iron after exposure to 0.1 M NaCl electrolyte was followed by electrochemical impedance spectroscopy. Under these conditions a conventional polyimide failed after 3 days exposure, while AQPI‐2 survived more than 24 days exposure. The adhesive bond between the amine–quinone polyimide and the iron surface was so strong that it could not be broken by the electrolyte. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2893–2899, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号