首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel type of hyperbranched (3-hydroxyphenyl) phosphate (HHPP) with high functionality as a curing agent of epoxy resins was synthesized and characterized by FTIR, 1H NMR and vapor phase osmometry (VPO). The cured epoxy resin with HHPP possessed improved glass transition temperature. The thermostability and flame retardancy of O-cresol novolac epoxy resin cured with different contents of HHPP were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI) and cone calorimetry. The obtained results show that the samples containing a higher percentage of HHPP exhibit relatively lower thermostability at lower temperature while higher thermostability at elevated temperature and more char was formed compared with those containing a lower percentage of HHPP. The LOI value increased from 22.0 to 30.0 when HHPP, instead of 1,3-dihydroxybenzene, was used as a curing agent. The 25 wt% addition of HHPP in the curing agent complex effectively decreased the heat release rate and improved the char yield to the content nearly similar as those of the epoxy resin cured with pure HHPP.  相似文献   

2.
The polysiloxane episulfide resin (PSER) was synthesized through replacement of the oxygen atoms in 1,3,5,7-tetra-(3-glycidoxypropyl) tetramethylcyclotetrasiloxane (TGCS) with sulfur atoms using potassium thiocyanate (KSCN). It was characterized by FT-IR, 1H NMR, MS and elemental analysis. The PSER resin was a low viscosity liquid, stable at room temperature. The polysiloxane episulfide resin was very reactive: a mixture of PSER and isophorondiamine gelated in a few seconds at room temperature. When m-phenylenediamine (m-PDA) or 2-ethyl-4-methylimidazole (2E4MZ) was used as curing agent, PSER exhibited higher reactivity compared with the parent polysiloxane epoxy resin. The reaction heat of the PSER resin was much lower in comparison with TGCS. The cured polysiloxane episulfide resin showed higher glass transition temperature and much lower water absorption, while the thermal stability was lower. It was found that methylhexahydrophthalic anhydride (MeHHPA) is not effective for curing the episulfide resin, although it is commonly used for curing epoxy resins.  相似文献   

3.
Abstract

To study the effect of water affinity of the cured epoxy resin on water sorption and permeation in the cured epoxy resin, a novel hardener (esterfied phenol novolac was synthesized and used for obtaining the cured product without free hydroxyl group. Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to study the cure kinetics of o-cresol novolac epoxy resin using esterfied phenol novolac resin as curing agent in the presence of 2-methylimidazole as accelerator. Some kinetic parameters of the curing reaction such as the reaction order, activation energy, and frequency factor were obtained in the temperature range studied. The results show that this curing process is a first-order kinetic mechanism, which was different with that cured with phenol novolac resin.  相似文献   

4.
A novel thermal latent curing agent, 2MZS, was obtained through the reaction of 2‐methylimidazole (2MZ) and a symmetrically carboxyl‐functionalized star‐shaped molecule based on cyclotriphosphazene (N3P3‐COOH). In the complex, the resonance of N3P3‐COOH reduced the activity of lone electron pairs on the pyridine‐type nitrogen atom of imidazole ring, suppressing the nucleophilic attack and crosslinking reaction between 2MZ and epoxy resin. As a result, the storage stability was improved distinctly for the one‐pot epoxy compound, which could be steadily stored at room temperature for nearly 1 month. Nonisothermal DSC revealed a delayed initiation curing mechanism of the prepared one‐pot system, and which could undergo rapid curing reaction upon raising the temperature. Moreover, the introduction of terminally polyfunctional star‐shaped phosphazene derivative could promote the curing process at elevated temperature, as well as improve the chain rigidity of the cured resin by chemical incorporation into the cross‐linked network, thus endowing the cured resin with enhanced glassy storage modulus. The epoxy thermoset exhibited the highest glass transition temperature and thermal degradation temperature when 20 wt% of 2MZS was used. It is suggested that the novel latent curing agent is potential for high‐performance one‐pot epoxy compound, particularly recommended for application in electronic packaging fields.  相似文献   

5.
The current research work presents a novel nonionic curing agent (AEDA) synthesized by utilizing ethylene glycol diglycidyl ether (EGDE), 3,4-dimethoxyaniline (DI), and triethylenetetramine (TETA). Infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to characterize the structure of AEDA curing agent. Non-isothermal scanning calorimetry was used to determine the activation energy and curing conditions of epoxy resin in the curing process. An impact testing machine, a tensile testing machine and a scanning electron microscope (SEM) were used to analyze the impact strength, tensile strength, bending strength, and micromorphology of the AEDA/E-51 system with different mass ratios. The results show that AEDA is an effective high-temperature curing agent. For the AEDA/E-51 system with the optimal mass ratio of 10:100, the best curing temperature is 92.15°C, and the post-curing temperature is 135.65°C. Furthermore, the apparent activation energy (Ea) of 1670 J/mol, the pre-exponential factor (A) of 3.7 × 10?4, and the reaction series (n) value of 0.76 are obtained for the AEDA/E-51 system. The impact strength of AEDA/E-51 epoxy resin polymer is 7.82 kJ/m2, tensile strength is 14.2 MPa, and bending strength is 18.92 MPa. The micromorphological results of the AEDA/E-51 system are consistent with the results of DSC test and mechanical properties test. Hence, this study provides theoretical support for the practical applications of AEDA as curing agent.  相似文献   

6.
《先进技术聚合物》2018,29(1):160-170
A trifunctional epoxy resin from itaconic acid (TEIA) was synthesized from a renewable resource‐based itaconic acid by allylation of itaconic acid to form diallyl itaconate by using m‐chloroperoxybenzoic acid as oxidizing agents followed by epoxidation of allylic C═C bond of diallyl itaconate methylhexahydropthalic anhydride as curing agent in the presence of 2‐methyl imidazole as a catalyst. The chemical structure of the synthesized resins was confirmed by Fourier transform infrared and nuclear magnetic resonance (1H‐NMR and 13C‐NMR) spectroscopy analysis. The mechanical, thermal, and rheological performances of the TEIA were also investigated and compared with diglycidyl ether of bisphenol A and a plant‐based epoxidized soybean oil bioresin cured with the same curing agent. The higher epoxy value of 1.02, lower viscosity (0.96 Pa s at 25°C), higher mechanical, and higher curing reactivity toward methylhexahydropthalic anhydride of TEIA as compared with epoxidized soybean oil and comparable with diglycidyl ether of bisphenol A demonstrated significant evidence to design and develop a novel bio‐based epoxy resin with high performance to substitute the petroleum‐based epoxy resin.  相似文献   

7.
A novel hyperbranched polyphosphate ester (HPPE) was synthesized via the polycondensation of bisphenol-A as an A2 monomer and phosphoryl trichloride as a B3 monomer at 100 °C, without gelation. The initial molar ratio of A2 to B3 was set to be 1.5:1. The final product was precipitated from methanol. 31P NMR spectroscopy was used to monitor the reaction. The formed HPPE was characterized by FTIR and 1H NMR to confirm its end groups. Differential scanning calorimetry data revealed that the cured bisphenol-A epoxy resin with HPPE as a curing agent possessed improved glass transition temperature. Dynamic mechanical thermal analysis also showed the increase in the glass transition temperature. The thermal degradation properties and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI). The results showed that the incorporation of HPPE into bisphenol-A epoxy resin increased its thermal stability and char yield during the decomposition by raising the second stage decomposition temperature. The LOI value increased from 23 to 31 when HPPE, instead of bisphenol-A, was used as a curing agent.  相似文献   

8.
A novel fluorinated epoxy resin, 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane (BGTF), was synthesized through a four-step procedure, which was then cured with hexahydro-4-methylphthalic anhydride (HMPA) and 4,4′-diaminodiphenyl-methane (DDM). As comparison, a commercial available epoxy resin, bisphenol A diglycidyl ether (BADGE), cured with the same curing agents was also investigated. We found that the BGTF gave the exothermic starting temperature lower than BADGE no mater what kind of curing agents applied, implying the reactivity of the former is higher than the latter. The fully cured fluorinated BGTF epoxy resins have good thermal stability with glass transition temperature of 170-175 °C and thermal decomposition temperature at 5% weight loss of 370-382 °C in nitrogen. The fluorinated BGTF epoxy resins also showed the mechanical properties as good as the commercial BADGE epoxy resins. The cured BGTF epoxy resins exhibited improved dielectric properties as compared with the BADGE epoxy resins with the dielectric constants and the dissipation factors lower than 3.3 and dissipation 2.8 × 10−3, respectively, which is related to the low polarizability of the C-F bond and the large free volume of CF3 groups in the polymer. The BGTF epoxy resins also gave low water absorption because of the existence of hydrophobic fluorine atom.  相似文献   

9.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

10.
Summary : An investigation was carried out into the cure kinetics of carbon nanofiber (CNF) mat-epoxy nanocomposites, composed of bisphenol-A based epoxy resin and diethylene triamine as a curing agent. It was observed that the rate of cure reaction for CNF mat-epoxy nanocomposites was higher than that for neat epoxy resin at low curing temperatures and the presence of the CNF mat produced the maximum influence at a certain curing temperature and time. At high curing temperature and long curing times, the effect of CNF mat on the cure rate was insignificant. The CNF mat-epoxy composite exhibited somewhat lower value of activation energy than that of the neat epoxy system at the beginning of the curing stage. The weight fraction of CNF mat also affected the cure reaction of epoxy nanocomposites at the same curing temperature. As the amount of CNF mat increased, the cure rate was higher at the same cure time. However, at high CNF mat loading, the cure reaction was retarded since the amount of epoxy and hardener decreased dramatically at high CNF contents together with the hindering effect of the CNF mat on the diffusion of epoxy resin and the curing agent, leading to lower crosslinking efficiency. Although the curing efficiency of epoxy nanocomposites dropped at high CNF mat content, the glass transition temperature (Tg) was still high due to the ultra-high strength of the CNF mat. The cure kinetics of CNF mat-epoxy nanocomposites was in good agreement with Kamal's model.  相似文献   

11.
A novel vegetable oil‐based polyamine issued from grapeseed oil (GSO) was prepared using cysteamine chloride (CAHC) by thiol‐ene coupling (TEC). The structure of the polyamine oil (AGSO) was carefully examined using a large range of chemical analyses (FTIR, 1H NMR and 13C NMR, LC‐MS…). The effects of the amination of GSO on the vegetable oil properties were also studied using viscosimetry. Then, AGSO was employed as a novel curing agent for bio‐based epoxy resin. The thermal crosslinking reaction between AGSO and epoxidized linseed oil (ELO) was studied by DSC and rheology. This study also dealt with the definition of the thermomechanical properties of the final material obtained by the mixing and curing of AGSO with ELO in stoichiometric proportions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
High curing temperature has been restricting the application and development of phthalonitrile resin. A complex curing agent containing melamine (ME) and ZnCl2 was developed to promote the curing reaction of resorcinol‐based phthalonitrile resin (DPPH). The thermal stability of ME can be significantly enhanced via adding ZnCl2, which was due to the interaction between ZnCl2 and amino group in ME. Moreover, the activities of pristine ZnCl2 and ME were improved via mixing, especially, the curing temperature for DPPH can be effectively reduced. Even at a curing temperature of 300°C, the 5% weight loss temperature of the resulting resin cured with complex curing agent still exceeded 500°C, which was much higher than those with pristine curing agents. In addition, the good long‐term oxidation stability and relatively low water absorption can also be obtained in the resins cured with novel curing agent. This work affords a facile route for designing high‐performance curing agent to improve the curing process of phthalonitrile resin.  相似文献   

13.
Epoxy resins are important thermosetting resins widely employed in industrial fields. Although the epoxy–imidazole curing system has attracted attention because of its reactivity, solidification of a liquid epoxy resin containing imidazoles proceeds gradually even at room temperature. This makes it difficult to use them for one‐component epoxy resin materials. Though powder‐type latent curing agents have been used for one‐component epoxy resin materials, they are difficult to apply for fabrication of fine industrial products due to their poor miscibility. To overcome this situation and to improve the shelf life of epoxy–imidazole compositions, we have developed a liquid‐type thermal latent curing agent 1 , generating an imidazole with a thermal trigger via a retro‐Michael addition reaction. The latent curing agent 1 has superior miscibility toward epoxy resins; in addition, it was confirmed that the epoxy resin composition has both high reactivity at 150 °C, and long‐term storage stability at room temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2680–2688  相似文献   

14.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

15.
The effect of curing agent (6610) content and temperature on the rheological behavior of the epoxy resin CYD-128 was studied by DSC analysis and viscosity experiments. The results show that the resin system meets the requirements of processing technology. A complete reaction occurs when the curing agent content (40 parts per hundred resin, phr) is a little higher than the theoretical value (33.33 phr), while the degree of reaction of the resin system is reduced when the curing agent content is lower (25.00 phr) than theoretical value. However, excessive curing agent (50.00 phr) results in a lower reaction rate. Curing agent content has little influence on gel time when curing agent content exceeded 33.33 phr and the temperature was less than 70 °C. The isothermal viscosity-time curves shift towards the -x axis when the temperature rises from 50 °C to 80 °C. Meanwhile, higher temperature results in higher reaction rates.  相似文献   

16.
Tryptophan, an amino acid, has been used as a novel, environmentally friendly curing agent instead of toxic curing agents to crosslink the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The curing reaction of tryptophan/DGEBA mixtures of different ratios and the effect of the imidazole catalyst on the reaction have been evaluated. The optimum reaction ratio of DGEBA to tryptophan has been determined to be 3:1 with 1 wt % catalyst, and the curing mechanism of the novel reaction system has been studied and elucidated. In situ Fourier transform infrared spectra indicate that with the extraction of a hydrogen from NH3+ in zwitterions from tryptophan, the formed nucleophilic primary amine and carboxylate anions of the tryptophan can readily participate in the ring‐opening reaction with epoxy. The secondary amine, formed from the primary amine, can further participate in the ring‐opening reaction with epoxy and form the crosslinked network. The crosslinked structure exhibits a reasonably high glass‐transition temperature and thermal stability. A catalyst‐initiated chain reaction mechanism is proposed for the curing reaction of the epoxy with zwitterion amino acid hardeners. The replacement of toxic curing agents with this novel, environmentally friendly curing agent is an important step toward a next‐generation green electronics industry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 181–190, 2007  相似文献   

17.
研制了基于松香酸酐固化剂的生物质环氧树脂体系,采用全动态DSC法研究了树脂体系的固化反应动力学,通过半经验的唯象模型拟合得到了固化反应参数,活化能Ea为59.68 kJ/g,指前因子A0为1.28×1015s-1,反应级数n为2.483,由此建立了体系固化温度/时间/固化度间的关系;采用恒温DSC及DMA方法测试玻璃化转变温度,应用DiBenedetto经验方程拟合得到了玻璃化转变温度与固化度间的关系.应用锥板旋转黏度计测试了树脂体系不同温度下的凝胶时间,通过线性回归分析得到了凝胶时间与温度之间的关系.由唯象模型和DiBenedetto方程分别计算得到凝胶时的固化度为0.386,玻璃化转变温度为26.22°C.由上述工作绘制了基于松香酸酐生物质树脂体系的TTT(time-temperature-transition diagram)固化图,可确定树脂体系在不同温度任意时间下的状态.  相似文献   

18.
A novel flame retardant curing agent for epoxy resin (EP), i.e., a DOPO (9,10-dihydro-9-oxa-10-phosphaphenan-threne-10-oxide)-containing 4,4'-bisphenol novolac (BIP-DOPO) was synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR spectroscopy, and gel permeation chromatography. The epoxy resin cured by BIP-DOPO itself or its mixture with a commonly used bisphenol A-formaldehyde novolac resin (NPEH720) was prepared. The flame retardancy of the cured EP thermosets were studied by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT), and the thermal properties by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that the cured epoxy resin EPNP/BI/3/1, which contains 2.2% phosphorus, possesses a value of 26.2% and achieves the UL 94 V-0 rating. The data from cone calorimeter test demonstrated that the peak release rate, average heat release rate, total heat release decline sharply for the flame retarded epoxy resins, compared with those of pure ones. DSC results show that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA indicates that the incorporation of BIP-DOPO promotes the decomposition of epoxy resin matrix ahead of time and leads to higher char yield. The surface morphological structures of the char residues reveal that the introduction of BIP-DOPO benefits to the formation of a continuous and solid char layer on the epoxy resin material surface during combustion.  相似文献   

19.
Sub‐micron waterborne dispersions of crosslinked bisphenol A epoxy resin were prepared by a phase‐inversion emulsification process in the presence of N,N‐dimethylbenzylamine as the curing agent. Differential scanning calorimetry was used to monitor the extent of crosslinking by post‐polymerization. The time and temperature of post‐polymerization influence the extent of crosslinking. Particle size could be controlled in the range 100–300 nm with a narrow size distribution by varying the content of curing agent and polymeric emulsifier, as investigated by means of scanning electron microscopy. A tentative physical model of the phase‐inversion emulsification process in the presence of curing agent is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号