首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miscibility and thermal stability of ethyl vinyl acetate (EVA) and ethylene octane (EO) copolymer blends with different compositions were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The degradation behavior by TGA data under dynamic conditions in an inert atmosphere shows the blends to be immiscible. The addition of EO improves the thermal stability of EVA for all composition and temperature ranges. Using the DSC experiment, two single crystallization temperatures (T c) for the blends were obtained and the crystallization and melting enthalpy with compositions abiding by the additive rules, confirm the immiscibility of the blends. The rate of crystallization seems to be independent of blend compositions. The surface morphology using AFM shows a thin and elongated crystallites of pure EO, and a bulky and random morphology for EVA, where a perfect mixture of aforementioned structures for 50/50 blend, with the immiscible domains of both EO and EVA. The 2D-power spectral density (PSD) analysis shows the surface roughness of 50/50 blends is in between of EO and EVA. Both AFM observations and quantitative PSD results, along the line with DSC and TGA. The experimental data for miscibility and stability by TGA, DSC and AFM techniques reveal that blends of EVA/EO are immiscible in the entire range of compositions.  相似文献   

2.
The morphology and thermal properties of Allylisobutyl Polyhedral Oligomeric Silsesquioxane (POSS)/Polybutadiene (PB) nanocomposites prepared through anionic polymerization technique were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and TEM showed that the aggregation of POSS in PB matrix occurred obviously, forming crystalline domains and the size of POSS particles increased with increasing POSS content. The DSC and TGA results indicated that the glass transition temperature (T g) of the nanocomposites was significantly increased and the maximum degradation temperature (T dmax) of nanocomposites was slightly increased compared with pure PB, implying an increase in thermal stability.  相似文献   

3.
The poly(3-hydroxybutyrate)(PHB)/poly(ethylene glycol)(PEG) grafting copolymer was successfully prepared by PHB and acrylate groups ended PEGM using AIBN as initiator. The crystallization behavior, thermal stability and environmental biodegradability of PHB/PEG grafting copolymers were investigated with differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and Biodegradation test in vitro. In the results, all the grafting copolymers were found to show the X-ray diffraction arising from the PHB crystal lattice, while none of the PEG crystallized peaks could be found even though the graft percent reached 20%. This result indicated that PEG molecules were randomly grafted onto PHB chain. The thermal properties measured by DSC showed that the melting temperature(Tm) and glass transition temperature (Tg) were both shifted to lower temperature with the graft percent increasing, and this broadened the narrow processability window of PHB. According to TGA results, the thermal stability of the grafting copolymers is not changed compared to pure PHB. From the biodegradation test, it could be concluded that degradation occurred gradually from the surface to the inside and that the degradation rate could be adjusted by the PEG grafting ratio. In another words, the biodegradation profiles of PHB/PEG grafting copolymer can be controlled. These properties make PHB/PEG grafting copolymer have promising potential applications especially in agriculture fields.  相似文献   

4.
In this work blends of poly(ethylene-co-vinyl alcohol) (EVOH) with different ethylene contents (27, 32, 38 and 44 mol%) and poly(methyl methacrylate) (PMMA) were prepared by mechanical mixing in the melted state. The miscibility and melting behavior as a function of blend composition and the ethylene content in EVOH copolymers were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The morphology of the cryofractured surfaces was examined by scanning electron microscopy (SEM). DSC and DMTA data show that EVOH/PMMA blends are immiscible, independent of EVOH and blend composition. The SEM analysis in agreement with DMTA analysis indicates that the morphology of phases depends on the blend composition, with phase inversion occurring as the concentration of one or other polymer component increases. However, the copolymer composition apparently does not affect the domain size distribution for blends containing 20 wt% of EVOH or 20 wt% of PMMA. A better phase adhesion is observed mainly for blends with 50 wt% of each polymer component.  相似文献   

5.
Melt blending was employed to prepare thermoplastic elastomer (TPE) of reclaimed rubber (RR) and high density polyethylene (HDPE). Mechanical properties of TPE samples were improved in different methods including dynamic vulcanization and reactive blending (reactive compatibilization) during melt mixing in an internal Haake mixer. The physical and mechanical properties of the TPE blends were investigated by the dynamic mechanical analysis (DMA) and tensile tests. The thermal behavior was characterized by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The phase morphology of the blends was studied by scanning electron microscopy (SEM). Experimental results showed that, both static and dynamic mechanical properties of reactively-compatibilized and dynamically-vulcanized samples improved significantly compared with the virgin samples. The effect of dynamic-vulcanization and reactivecompatibilization on the mechanical properties revealed that the Young’s modulus and storage modulus increased with both improvement methods. SEM results showed that, dynamic-vulcanization and reactivecompatibilization methods improved the distribution of RR particles in HDPE matrix. Although both methods improved the thermal and mechanical properties of the HDPE/RR blends, dynamic-vulcanization was more effective and promising approach due to the higher properties of HDPE/RR blends prepared by this method.  相似文献   

6.
The structure and compatibility of poly(vinyl alcohol)-silk fibroin (PVA/SF) blend films were analyzed by differential scanning calorimetry (DSC), thermomechanical (TMA) and thermogravimetric (TGA) analysis, x-ray diffractometry, and scanning (SEM) and transmission (TEM) electron microscopy. DSC curves of PVA/SF blend films showed a major endothermic peak at 220°C, along with a peak at 280°C. These endotherms were assigned to the thermal decomposition of the ordered PVA elements and to the thermal degradation of silk fibroin, respectively. The PVA/SF blends behaved in a manner intermediate to the pure components, as suggested by both contraction expansion and sample weight retention properties recorded by TMA and TGA measurements. The IR absorption spectra of the blends were identified as purely a composite of the absorption bands characteristic of both PVA and SF pure polymers. The X-ray diffraction patterns of PVA/SF blends showed overlapping spacing due to PVA and SF. A dispersed phase formed by spherical particles of 3–7 μm diameter was observed by SEM and TEM. All these findings suggest that PVA and SF are incompatible. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Porous poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membranes were successfully prepared using dibutyl phthalate (DBP), polyvinylpyrrolidone (PVP-K30), polyethylene glycol 200 (PEG200) as templates. SEM was used to examine the morphology of the PVDF-HFP porous membranes. It was found that these membranes have an asymmetric structure and the blends of PVDF-HFP/DBP formed nanoporous membranes, whereas the blends of PVDF- HFP/PVP-K30 formed "sponge-like" and microporous membranes. Moreover, the average pore size and porosity was about 0.3 μm and 48.7%, respectively. The crystallinity, thermal stability and mechanical strength of membranes were characterized by XRD, DSC, TGA and stress-strain tests. The results showed that the membranes are a crystals with excellent thermal stability. It was an effective way to regulate pore size and morphology of the PVDF-HFP membranes.  相似文献   

8.
The mechanical, thermal and biodegradable properties of poly(d,l-lactide) (PDLLA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ethylene glycol) (PEG) blends were studied. The influence of PEG on the tensile and impact strengths of the blends was investigated. The results showed that the toughness and elongation at break of the PDLLA/PHBV (70/30) blends were greatly improved by the addition of PEG, and the notched Izod impact strength increased about 400% and the elongation at break increased from 2.1% to 237.0%. The thermal and degradation properties of the blends were investigated by differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA), it was found that the thermal stability of PHBV in the presence of PDLLA was improved. The degradation test showed that the addition of PEG could notably accelerate the biodegradation of the blends in the soil at room temperature, and the mass loss is about 20% after 30 days of the storage.  相似文献   

9.
聚乳酸/羧基化聚丙烯共混物的形态与热性能研究   总被引:1,自引:0,他引:1  
以扫描电子显微镜、热重分析仪、差示扫描量热仪、热台偏光显微镜分别研究了聚乳酸/羧基化聚丙烯共混体系的相形态、热性能和结晶形态.结果显示,共混物熔体冷却时,聚乳酸和羧基化聚丙烯均形成球晶,但羧基化聚丙烯球晶较大而十字消光较暗,聚乳酸球晶尺寸较小而十字消光较亮,且聚乳酸球晶产生规则的、不连续的同心环线——裂纹,裂纹厚度约为1~2μm,且裂纹内部有微纤存在.当聚乳酸含量≤50%时,由于聚丙烯上羧基的存在而使共混体系具有较好的相容性.共混物的热分解过程分为三个阶段,热分解温度的变化是聚丙烯上的羧基、聚乳酸和聚丙烯骨架分解三种机制共同作用的结果,少量聚乳酸能够明显提高共混物中聚丙烯上羧基的热稳定性.共混物中的羧基化聚丙烯组分可以发挥稀释剂的作用,大幅度降低了聚乳酸的冷结晶温度.聚乳酸含量≥50%时,共混熔体降温时DSC谱图中聚乳酸和羧基化聚丙烯分别结晶,而聚乳酸含量<50%时,只观察到羧基化聚丙烯的结晶行为.  相似文献   

10.
Sumin Kim 《Thermochimica Acta》2006,444(2):134-140
The thermal properties of blends of melamine-formaldehyde (MF) resin and poly(vinyl acetate) (PVAc) for engineered flooring used on the Korean traditional ONDOL house floor heating system were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The viscoelastic properties of the blends were also studied. Because MF resin is a thermosetting adhesive, the effect of MF rein was shown across all thermal behaviors. The addition of PVAc reduced the curing temperature. The TGA results showed that the DTGmax temperature and thermal stability of the blends increased with increasing PVAc content. The blends were examined in non-isothermal DSC experiments at a heating rate of 10 °C/min. There was an exothermic peak in all the heating scanning curves, with each blend displaying a single curing peak temperature (Tp), intermediate between those of the two pure components and varying with the blend composition. The DMTA thermogram of MF resin showed that the storage modulus (E′) increased as the temperature was further increased as a result of the cross-linking induced by the curing reaction of the resin. E′ of MF resin increased both as a function of increasing temperature and with increasing heating rate.  相似文献   

11.
Cotton fabric was coated with chitosan (CS) and polyethylene glycol (PEG) followed by freeze‐drying. The influence of PEG on the physical characteristics and the surface morphology was investigated. The scanning electron microscopy of the coated fabric revealed a porous structure. The porosity of the material was 54–70% and the pore size was in the range of 75–120µm. The increase in the PEG content in the blend composition led to an enhanced destabilization of pores, leading to an increase in the pore size with elongated morphology. There seems to be phase separation between the two components which is an important factor for the observed behavior of the porous structure. The Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) showed that the CS and PEG have limited interaction. DSC suggested that addition of PEG to CS does not interfere with the crystallization behavior due to limited interaction with CS. The thermogravimetric analysis (TGA) showed that the membranes are thermally stable and PEG enhances the thermal stability of the CS coated membranes. The air and water permeability of the membranes tended to decrease with the increase in the PEG content. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.

Blend films of poly(vinyl alcohol) (PVA) and sodium alginate (NaAlg) were prepared by casting from aqueous solutions. This blend films were characterized by tensile strength test, Fourier transform infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The miscibility in the blends of PVA and NaAlg was established on the basis of the thermal analysis results. DSC showed that the blends possessed single, composition‐dependent glass transition temperatures (Tgs), indicating that the blends are miscible. FT‐IR studies indicate that there is the intermolecular hydrogen bonding interactions, i.e. –OH…?OOC– in PVA/NaAlg blends. The blend films also exhibited the higher thermal stability and their mechanical properties improved compared to those of homopolymers.  相似文献   

13.
Natural rubber/styrene-butadiene rubber (NR/SBR) blends, with and without silica, were prepared by co-coagulating the mixture of rubber latices and various amounts of well-dispersed silica suspension. An attempt to predict blend compositions was made using Raman spectroscopy in association with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the intensity of each Raman characteristic peak was strongly dependent on the blend composition, but there was no significant evolution with the presence of silica. Also, TGA results revealed an improvement in thermal stability of NR/SBR blends with increasing both SBR and silica contents due to the dilution effect. Two distinct glass transition temperatures (Tg) were observed in DSC thermograms of all blends, and their Tg values were independent on both blend composition and silica content. This indicated a physical blend formation, which agreed well with no shifts in Raman peaks of the blends in comparison with those of the individual rubbers. Linear regression with R2 quality factor close to 0.99 was achieved when plotting intensity ratio at 1371/1302 cm?1 versus blend ratios. On the other hand, the peak height ratio and heat capacity ratio from TGA and DSC analysis, respectively, yielded quadratic equations as a function of blend ratios.  相似文献   

14.
Super-toughened poly(lactic acid) (PLA)/poly(ethylene-co-vinyl acetate) (EVA) blends were prepared via 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD) induced dynamic vulcanization and in situ interfacial compatibilization. The effects of AD on the morphology and properties of PLA/EVA blends were studied using a Brabender torque rheometer, gel content test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) thermogravimetric analysis (TGA) and mechanical properties test. The torque and gel content demonstrated that EVA and PLA was successfully vulcanized in the presence of free radicals obtained by the decomposition of the 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD). Additionally, the gel content results indicated that, compared with PLA, EVA is more aggressive with free radicals. The SEM revealed that a relatively uniform phase morphology and good interfacial compatibilization were achieved in the dynamically vulcanized PLA/EVA/AD blends. The interfacial reaction and compatibilization between the component polymers resulted in the formation of super-toughened PLA/EVA blended materials.  相似文献   

15.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

16.
Summary: Polymer blends consisting of linear poly(phenylene sulfide) (PPS) and hyperbranched PPS (HPPS) were obtained in melt. The solid-state properties of PPS and their blends were investigated by scanning electron microscopy (SEM), thermogravimetric analyzer (TGA), extraction measurement, differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA). Blends prepared by melt mixing turned out to be reactive as shown by the TGA and extraction measurement. SEM indicated that no phase separation occurs in PPS/HPPS blends. The degree of crystallization of the blends decreased with increasing HPPS content. Both the storage modulus and loss modulus increased as HPPS content increasing.  相似文献   

17.
Blends containing PVC and aramid (Ar) matrices were probed for their miscibility. In this respect, Ar chains were synthesized by aromatic diamine and diacid chloride in amide solvent. The Ar thus synthesized was characterized through Fourier transform infrared (FTIR) spectroscopy and molecular weight determination. Blend system Ar/PVC was investigated over a range of Ar/PVC ratios. Their mechanical profiles in terms of maximum stress, maximum strain, toughness, and initial moduli have been explored. Thermal properties and morphology of the blends were estimated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). A good correlation was observed between thermal, mechanical, and morphological properties of the blends. The presence of hydrogen bonding among polymers was evaluated through FTIR spectroscopy, which is believed to be responsible for the blend miscibility. Optimal thermal and mechanical profiles were depicted by the blend containing 40-wt% PVC in the Ar matrix.  相似文献   

18.
The blends of poly(hydroxyether of bisphenol A) (phenoxy) and poly(vinyl acetate) (PVAc) were prepared through in situ polymerization, i.e., the melt polymerization of diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of PVAc. The polymerization reaction started from the initial homogeneous ternary mixture of PVAc/DGEBA/bisphenol A; the phase separation induced by reaction occurred as the polymerization proceeded. The phenoxy/PVAc blends with PVAc content up to 20 wt % were obtained and were further characterized by the solubility, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM). The results indicate that no intercomponent reaction occurred during the in situ polymerization. All the blends display separate glass transition temperatures (Tg's); the very fine phase-separated morphology was obtained by this polymerization blending method. Mechanical tests show that the prepared blends exhibited substantial improvement of mechanical properties, especially in impact strength, which could be ascribed to the formation of the fine phase-separation morphology during in situ polymerization. The thermogravity analysis (TGA) of the blends showed that the thermal stability of the PVAc-rich phases in the blends was enhanced in comparison to the pure PVAc due to the synergistic contribution of the two phases in energy transportation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2329–2338, 1999  相似文献   

19.
Lipases from Burkholderia cepacia were encapsulated using polyethylene glycol (PEG, M w 1500) at various concentrations (0.5–3.0 %, w/v) as an additive during the sol–gel immobilisation process. Matrixes immobilized in the presence and absences of additives were characterized by thermal analysis [thermogravimetric (TG) and differential scanning calorimetry (DSC)], scanning electron microscopy (SEM), enzymatic activity, and total activity recovery yield (Ya). The addition of PEG increased the activity values, with Ya just above 1.0 % (w/v) in the presence of PEG. The additional of 1.0 % (w/v) PEG increased enzyme activity from 33.98 to 89.91 U g?1 and the values of recovery yield were 43.0–91.4 %, compared to values of the samples without PEG. PEG enhanced the thermal stability of the matrix structure in the temperature range 50–200 °C, as confirmed by TG and DSC analyses. This was influenced by the presence of water bound to the matrix. The SEM micrographs clearly showed an increase in the number of deposits on the material surface, producing matrices with greater porosity.  相似文献   

20.
We reported proton-conducting membranes with novel microstructure based on partially phosphorylated poly(vinyl alcohol) (P-PVA) and polyethylene glycol (PEG) grafted silica (PEG-SiO2) particles. The PEG-SiO2 particles were synthesized through acid catalyzed hydrolysis and condensation reactions. The membranes were characterized for their mechanical, structural, morphological, and electrical properties by employing tensile test, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), impedance analyzer, respectively. In these membranes, P-PVA acts as the proton source and PEG act as the proton solvent. The PEG-riched phases in the hybrid membrane form continuous ionic conducting pathways and subsequently give high ionic conductivity. The results suggest that the obtained membrane shows good thermal stability, excellent mechanical property and high ionic conductivity, and the low-cost hybrid membrane can be a promising candidate for intermediate temperature fuel cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号