首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficient delivery of small interfering RNA (siRNA) to tumor cells still remains a great challenge. Of the various nanocarriers, protein nanocages have attracted extensive interest due to their unique structure and suitable characteristics derived from their proteinaceous nature. However, most reported protein nanocages that are developed are based on virus capsid proteins, which may raise safety concerns, including those related to gene mutation and carcinogenesis. The development of nonviral protein‐based systems for siRNA delivery is greatly needed. In this study, a novel siRNA delivery system based on heat shock protein (Hsp) nanocages is developed by a genetic engineering method. The delivery system could condense siRNA into stable complexes and protect the condensed siRNA from degradation. A cellular uptake analysis shows that siRNA is introduced into tumor cells mediated by Hsp‐R9 nanocages. Green fluorescent protein (GFP) expression in HeLa‐EGFP cells is significantly downregulated by Hsp‐R9/siRNA complexes. The results indicate that Hsp nanocages may be a good platform for siRNA delivery into tumor cells.  相似文献   

2.
Pluronic/polyethylenimine shell crosslinked nanocapsules with embedded magnetite nanocrystals (PPMCs) were developed for magnetically triggered delivery of siRNA. The positively charged PPMCs formed stable nanosized polyelectrolyte complexes via electrostatic interactions with negatively charged siRNA‐polyethylene glycol conjugate (siRNA‐s‐s‐PEG) that was linked via a cleavable disulfide linkage. PPMC/siRNA‐s‐s‐PEG polyelectrolyte complexes were efficiently taken up by cancer cells upon exposure to a magnet, thereby enhancing intracellular uptake and silencing effect of siRNA. The present study suggests that these novel nanomaterials could be potentially utilized for magnetically triggered delivery of various nucleic acid‐based therapeutic agents.

  相似文献   


3.
The synthesis, characterization, and potential application as gene delivery systems of biodegradable dual‐responsive core–shell nanogels based on poly(2‐diethylaminoethyl) methacrylate (PDEAEMA) and poly(N‐vinylcaprolactam) (PVCL) are reported. These core–shell nanogels, having a PDEAEMA‐based core and a PVCL‐based shell, were synthesized by batch seeded emulsion polymerization. An indepth study of their swelling behavior was carried out, which presented a dual‐dependent thermo‐ and pH sensitivity. Core–shell nanogels synthesized formed complexes spontaneously through electrostatic interactions when mixing with small interfering RNA (siRNA) molecules. Moreover, the core–shell nanogel/siRNA complexes showed higher polyanion exchange resistance compared to that of the PDEAEMA‐based nanogel/siRNA complexes, indicating that the PVCL‐based shell enhanced the stability of the complexes. In vitro siRNA release profiles showed that siRNA release was controlled by the pH of the medium as well as by the crosslinking density of the PVCL‐based shell. These results indicate that dual‐responsive core–shell nanogels synthesized could be potentially useful as gene delivery systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3203–3217  相似文献   

4.
Characterization of a polymer library engineered to enhance their ability to protect and deliver their nucleotide cargo to the cells is reported. The ζ-potential continuously increased with higher polymer:siRNA weight ratio, and the ζ-potential of lipid-modified polymers:siRNA complexes were higher than PEI2 at all ratios. At polymer:siRNA ratio of 1:1, all lipid-substituted polymers showed complete protection against degradation. Lipid-modified polymers significantly increased the cellular uptake of siRNA complexes and down-regulation of GAPDH and P-gp (max. 66% and 67%, respectively). The results indicate that hydrophobic modification of low molecular PEI could render this otherwise ineffective polymer to a safe effective delivery system for intracellular siRNA delivery and protein silencing.  相似文献   

5.
background: Assimilation of iron is essential for microbial growth. Most microbes synthesize and excrete low molecular weight iron chelators called siderophores to sequester and deliver iron by active transport processes. Specific outer membrane proteins recognize, bind and initiate transport of species-selective ferric siderophore complexes. Organisms most often have specific receptors for multiple types of siderophores, presumably to ensure adequate acquisition of the iron that is essential for their growth. Conjugation of drugs to synthetic hydroxamate or catechol siderophore components can facilitate active iron-transport-mediated drug delivery. While resistance to the siderophore—drug conjugates frequently occurs by selection of mutants deficient in the corresponding siderophore-selective outer membrane receptor, the mutants are less able to survive under iron-deficient conditions and in vivo. We anticipated that synthesis of mixed ligand siderophore—drug conjugates would allow active drug delivery by multiple iron receptor recognition and transport processes, further reducing the likelihood that resistant mutants would be viable.Results: Mixed ligand siderophore-drug conjugates were synthesized by combining hydroxamate and catechol components in a single compound that could chelate iron, and that also contained a covalent linkage to carbacephalosporins, as representative drugs. The new conjugates appear to be assimilated by multiple active iron-transport processes both in wild type microbes and in selected mutants that are deficient in some outer membrane iron-transport receptors.Conclusions: The concept of active iron-transport-mediated drug delivery can now be extended to drug conjugates that can enter the cell through multiple outer membrane receptors. Mutants that are resistant to such conjugates should be severely impaired in iron uptake, and therefore particularly prone to iron starvation.  相似文献   

6.
Direct administration of drugs and genes to the lungs by pulmonary delivery offers a potential effective therapy for lung cancers.In this study,combined doxorubicin(DOX)and Bcl2 siRNA was employed for cancer therapy using polyethylenimine(PEI)as the carrier of Bcl2 siRNA.Most of the DOX and siRNA possessed high cellular uptake efficiency in B16F10 cells,which was proved by FCM and CLSM analysis. Real-time PCR showed that PEI/Bcl2 siRNA exhibited high gene silencing efficiency with 70% Bcl2 mRNA being knocked down.The combination of DOX and siRNA could enhance the cell proliferation inhibition and the cell apoptosis against B16F10 cells compared to free DOX or PEI/Bcl2 siRNA.Furthermore,the biodistribution of DOX and siRNA via pulmonary administration was studied in mice with B16F10 metastatic lung cancer.The results showed that most of the DOX and siRNA were accumulated in lungs and lasted at least for 3 days,which suggested that combined DOX and siRNA by pulmonary administration may have high anti-tumor effects for metastatic lung cancer treatment in vivo.  相似文献   

7.
Reactive oxygen species (ROS) forming enzymes are of significant interest as anticancer agents due to their potent cytotoxicity. A key challenge in their clinical translation is attaining site‐specific delivery and minimizing biodistribution to healthy tissues. Here, complexes composed of the ROS enzyme glucose oxidase (GOX), poly‐l ‐lysine‐grafted‐polyethylene glycol (PLL‐g‐PEG), and anti‐prostate specific membrane antigen (anti‐PSMA) monoclonal antibody are synthesized for localized delivery and uptake in prostate cancer cells. Formation of anti‐PSMA‐PLL‐g‐PEG/GOX results in nanoscale complexes ≈30 nm in diameter with a ζ‐potential of 6 mV. The anti‐PSMA‐PLL‐g‐PEG/GOX complexes show significant cytotoxicity (≈60% reduction in cell viability) against PSMA‐expressing LNCaP cells compared to unmodified GOX. Importantly, cytotoxicity in LNCaP cells occurrs concurrently with anti‐PSMA‐PLL‐g‐PEG/GOX uptake and increases in intracellular generation of ROS. These results demonstrate that cytotoxicity of ROS inducing enzymes can be enhanced by intracellular delivery compared to equivalent concentrations of free enzyme, providing a novel means for cancer therapy.  相似文献   

8.
The present paper reports the utilization of hybrid nanocomposite particles consisting of PEI25k-PEG5k copolymer grafted silica nanoparticles (SiO2NPs) for enhanced cellular uptake and siRNA delivery. High-resolution transmission electron microscopy and dynamic light scattering measurements ensured the average particle size of the final hybrid component as 45 nm (core SiO2, 28–30 nm and shell PEI25k-PEG5k, 12–15 nm). Surface morphology from atomic force microscopy analysis showed the significant relationship between the particle size and shape. 29Si and 13C cross-polarization–magic angle spinning solid state nuclear magnetic resonance (NMR), 1H-NMR, and Fourier transform infrared spectroscopy were used to obtain the relevant structural information (such as Q3, silanol; Q4, siloxane functional groups of SiO2NPs; resonance shifts and bending vibrations of PEI25k, –CH2–CH2–NH–; and PEG5k, –CH2–CH2–O–) from copolymer nanoparticle. Stable complexation of siRNA and nanocomposite particle (wt.%:wt.%) was achieved from 1:5 to 1:15 ratio. Nanocomposite particle (N/P) ratio and siRNA concentration determine the stability and knockdown efficiency of the PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes. It was shown that highly positively charged (zeta potential, +66 mV) PEI25k-PEG5k-graft-SiO2NPs result in strong affinity with negatively charged siRNA. Confocal microscopy showed intensified cellular uptake of siRNA into cytoplasm of A549 cancer cell utilized for in vitro study. In conclusion, the coherence, graft density of copolymer-SiO2NPs, and siRNA concentration were found to strongly influence the stability, and hence determine the knockdown efficiency, of PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes.  相似文献   

9.
Loosely aggregated conjugated polymer nanoparticles (CPNs) were used as nontoxic and efficient small interfering RNA (siRNA) delivery vehicles with delivery visualization. A significant down regulation (94%) of a target gene was achieved by transfection of HeLa cells with the CPNs/siRNA complexes, supporting CPN as a promising siRNA delivery carrier.  相似文献   

10.
通过分散聚合的方法,以改性了双键的葡聚糖(Dex-AA)作为交联剂,甲基丙烯酸二甲氨基乙酯(DMAEMA)作为单体,过硫酸铵(APS)和四甲基乙二胺(TEMED)分别作为引发剂和助引发剂,合成了不同交联度的、具有pH敏感内吞增强作用的葡聚糖纳米凝胶(DD-NGs),并测试了其复合siRNA进行转染的能力.实验结果表明,该纳米凝胶表面带有正电荷,具有较好的担载siRNA进入肿瘤细胞并沉默基因的能力,且具有pH响应粒径变化的性质.在pH=7.4的体液环境中,纳米凝胶与基因的复合物粒子较小;在肿瘤酸性(pH=6.8)条件下,纳米凝胶与基因的复合物粒子变大,显著地增强了肿瘤细胞对纳米凝胶与基因复合物的内吞.  相似文献   

11.
Integrin-mediated delivery of genes is evaluated using a synthetic vector formed by self-assembly of DNA with an oligolysine- peptide sequence containing RGD (referred to as K16-RGD). The RGD peptide binds plasmid DNA effectively and inhibits ethidium bromide/DNA fluorescence at N-to-P ratios of less than 1.0. At N:P ratio 1.0, peptide/DNA complexes formed show a mixture of normal DNA migration and retention at the origin when analysed by agarose electrophoresis. At N:P ratio of 1.2, the complexes have a slight positive surface charge (5 mV) and in the absence of serum they show 10-fold increase uptake into 293 cells, compared with control poly( -lysine)/DNA vectors, together with a 100-fold increase in transfection. In the presence of serum, RGD-mediated uptake is decreased about 3-fold, but the targeted vectors achieve over 150 times greater transfection than poly( -lysine)/DNA controls. Transfection could be inhibited by addition of competing RGD, and to a lesser extent RGE, peptides. The targeted vector is believed to achieve cell uptake and transfection by binding av integrins in the cell surface, and the approach could be employed to promote internalisation of vectors following their binding to other, high affinity, receptors, in a system analogous to adenovirus entry.  相似文献   

12.
Nanoparticles with specific properties and functions have been developed for various biomedical research applications, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. The development of an effective delivery method of nanoparticles into the intracellular environment is challenging and success in this endeavor would be beneficial to many biological studies. Here, the well-established microelectrophoresis technique was applied for the first time to deliver nanoparticles into living cells. An optimal protocol was explored to prepare semiconductive quantum dots suspensions having high monodispersity with average hydrodynamic diameter of 13.2–35.0 nm. Micropipettes were fabricated to have inner tip diameters of approximately 200 nm that are larger than quantum dots for ejection but less than 500 nm to minimize damage to the cell membrane. We demonstrated the successful delivery of quantum dots via small electrical currents (–0.2 nA) through micropipettes into the cytoplasm of living human embryonic kidney cells (roughly 20–30 μm in length) using microelectrophoresis technique. This method is promising as a simple and general strategy for delivering a variety of nanoparticles into the cellular environment.  相似文献   

13.
Quantum dot-mediated siRNA theranostic systems enhance the siRNA delivery, and track the uptake and distribution of siRNA.  相似文献   

14.
Chemo and siRNA synergic treatments for tumors is a promising new therapeutic trend. Selenocystine, a selenium analog of cysteine, has been considered a potential antitumor agent due to its redox perturbing role. In this study, we developed a nanocarrier for siRNA based on a selenocystine analog engineered polyetherimide and achieved traceable siRNA delivery and the synergic killing of tumor cells. Notably, we applied the label-free Schiff base fluorescence mechanism, which enabled us to trace the siRNA delivery and to monitor the selenocystine analogs’ local performance. A novel selenocystine-derived fluorescent Schiff base linker was used to crosslink the polyetherimide, thereby generating a traceable siRNA delivery vehicle with green fluorescence. Moreover, we found that this compound induced tumor cells to undergo senescence. Together with the delivery of a siRNA targeting the anti-apoptotic BCL-xl/w genes in senescent cells, it achieved a synergistic inhibition function by inducing both senescence and apoptosis of tumor cells. Therefore, this study provides insights into the development of label-free probes, prodrugs, and materials towards the synergic strategies for cancer therapy.  相似文献   

15.
Abstract

In this study, two novel benzimidazole-based N-heterocyclic carbene ligands (1a-b) and their silver(I) complexes (2a-b) were synthesized. All new compounds were characterized by FT-IR, LC-MS, 1H NMR, and 13C NMR spectroscopies. The in vitro antitumor activities of NHC ligands (1a-b) and their silver(I) complexes (2a-b) against DU-145 human prostate cancer cells, MDA-MB-231 and MCF-7 human breast cancer cells and L-929 (normal cells adipose from mouse) were also determined using MTT analysis for 24?h, 48?h, and 72?h. The results showed that while NHC ligands did not have in vitro antitumor activity on MCF-7, MDA-MB-231 and DU-145 cells, Ag(I)-NHC complexes have in vitro antitumor activities. The in vitro antitumor activity of 2a was found to be lower than that of 2b. Ag(I)-NHC complexes were observed to have higher IC50 values for non-cancerous cell lines than cancer cells.  相似文献   

16.
Short double‐stranded RNAs, which are known as short interfering RNA (siRNA), can be used to specifically down‐regulate the expression of the targeted gene in a process known as RNA interference (RNAi). However, the success of gene silencing applications based on the use of synthetic siRNA critically depends on efficient intracellular delivery. Polycationic branched macromolecules such as poly(amidoamine) (PAMAM) dendrimers show a strong binding affinity for RNA molecules and, hence, can provide an effective, reproducible, and relatively nontoxic method for transferring siRNAs into animal cells. Notwithstanding these perspectives, relatively few attempts have been made so far along these lines to study in detail the molecular mechanisms underlying the complexation process between PAMAMs and siRNAs. In this work we combine molecular simulation and experimental approaches to study the molecular requirements of the interaction of RNA‐based therapeutics and PAMAM dendrimers of different generations. The dendrimers and their siRNA complexes were structurally characterized, and the free energy of binding between each dendrimer and a model siRNA was quantified by using the well‐known MM/PBSA approach. DOSY NMR experiments confirmed the structural in silico prediction and yielded further information on both the complex structure and stoichiometry at low N/P ratio values. siRNA/PAMAM complex formation was monitored at different N/P ratios using gel retardation assays, and a simple model was proposed, which related the amount of siRNA complexed to the entropy variation upon complex formation obtained from the computer simulations.  相似文献   

17.
Short interfering RNA (siRNA) functions directly in the cytoplasm, where it is assembled into an RNA-induced silencing complex (RISC). The localized delivery of siRNA to a specific site in vivo is highly challenging. There are many disease states in which a systemic effect of RNAi may be desirable; some examples include non-localized cancers, HIV, neurodegenerative diseases, respiratory viruses, and heart and vascular disease. In this Concept, we will focus on the localized delivery of siRNA to a target site using various delivery modalities. In certain tissues, such as the eye, central nervous system and lung, it has been demonstrated that a simple injection of naked siRNA will silence gene expression specifically in that tissue. To achieve local gene silencing in other tissues, a variety of approaches have been pursued to help stabilize the siRNA and facilitate uptake; they include chemical modification of the siRNA or complexation within liposomes or polymers to form nanoparticles. Recently, the use of macroscopic biomaterial scaffolds for siRNA delivery has been reported, and although there is still significant work to be done in this area to optimize the delivery systems, it is an important area of research that offers the potential for having great impact on the field of siRNA delivery.  相似文献   

18.
With the upsurging cases of type II diabetic patients, the demand for safe and effective oral antidiabetic drugs is also increasing. Coordination complexes have proven their mettle as efficient oral drug candidates, which thereby motivated us in this work to design new transition metal complexes as plausible candidates for the treatment of diabetes. A reduced salen ligand, {H2(hpdbal)2-an} ( 1 ) derived vanadium (IV) and iron (III) complexes, namely, [VIVO{(hpdbal)2-an}] ( 2 ) and [{FeIII (OH2)((hpdbal)2-an)}2 μ2-SO4] ( 3 ) were synthesized in this study. The newly obtained ligand and complexes were characterized using usual analytical and spectroscopic techniques. The potential of these compounds in inducing increased glucose uptake by diabetic cells were studied by using insulin resistant HepG2 cells as model diabetic cells and 2-NBDG molecule as a D-glucose analogue and fluorescent tracker. The cells added with the vanadium (IV) complex 3 induced significant NBDG uptake of 95.4% which was higher than that induced by metformin, the standard antidiabetic drug. To elucidate the behavior of the complexes in biological media, model solution studies were conducted with a wide range of pH conditions and protein bovine serum albumin (BSA). The complexes demonstrated effective binding with BSA which was concluded through spectroscopic titration studies and were also found to be sufficiently stable over physiological pH conditions. The study can thus prove to be beneficial in the quest for new antidiabetic drugs.  相似文献   

19.
Investigation of N-heterocycle transition metal complexes has led to the discovery of metal-based antitumor agents. Herein, two binuclear complexes, [Cu(p-4-bmb)(Ac)2]2 (1) and [Co(p-4-bmp)Cl2]2 (2), were prepared and characterized. The interactions of 1 and 2 with calf thymus (CT)-DNA and bovine serum albumin (BSA) were detected by absorbance and emission spectroscopy. The complexes bind to CT-DNA via an intercalative mode and show moderate affinity to BSA. Both complexes exhibited remarkable DNA cleavage activity. The MTT assay demonstrated that 1 exhibited higher cytotoxicity against three human alimentary system carcinoma cell lines compared to 2. Further, a cellular uptake assay demonstrated that 1 can accumulate in the nucleus and mitochondria of SMMC7721 cells to induce DNA damage and mitochondrial dysfunction. Fluorescence staining and flow cytometry analyses revealed that 1 can induce cell death by apoptosis. These findings should promote the development of benzimidazole-based transition metal complexes as novel chemotherapy agents with fewer side effects than conventional antitumor drugs.  相似文献   

20.
利用五羰基溴化锰和2-吡啶甲醛以及卤代苯胺通过一步法合成得到了3个含席夫碱配体的锰羰基配合物[Mn (CO)3(py (CH=N) ph-X) Br],其中X=Cl (1)、Br (2)、I (3),并采用核磁、X射线单晶衍射、红外光谱、紫外可见光谱和荧光光谱对其进行了表征。这类配合物在非光照下稳定,在可见光(LED蓝光、绿光和红光)作用下分解释放CO,可以作为光诱导的一氧化碳释放剂(photoCORMs)。研究表明蓝光是促进配合物分解释放CO的最有效光源。此外,CO释放动力学分析显示配合物分解释放CO过程符合一级动力学模型。配合物3的释放研究表明脱氧肌红蛋白能够捕捉所释放的CO。尽管这些配合物本身的细胞毒性(IC50)达到微摩尔级,但光照下的细胞兼容性有显著改善,上升为接近100微摩尔级。这些配合物具有荧光性质,在450 nm激发波长下在500~700 nm范围内发射一定强度的荧光,可以作为荧光标记物用以监测细胞或生物体内释放剂分布及CO释放情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号