共查询到20条相似文献,搜索用时 15 毫秒
1.
Xing Xiao Yaqin Fu Minghao Sun Lin Li Zhishan Bo 《Journal of polymer science. Part A, Polymer chemistry》2007,45(12):2410-2424
A series of conjugated triblock copolymers containing hole-transporting polycarbazole segments, electron-transporting polyoxadiazole segments, and blue-light-emitting polyfluorene segments were prepared with a two-step palladium-catalyzed Suzuki polycondensation (SPC). First dibromo-terminated polymer precursors (polyfluorenes and polyoxadiazoles) were synthesized as the central buildingblocks. Then, the dibromo-terminated polymer precursors were further polymerized with AB-type monomers [2-bromo-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole, 3-bromo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-octylcarbazole, and 2-bromo-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9,9-dioctylfluorene] to achieve the target triblock copolymers under SPC conditions. The formation of the triblock copolymers was confirmed by gel permeation chromatography and NMR spectroscopy. The triblock copolymers exhibited good thermal stability. An investigation of the photophysical properties indicated that efficient, photoinduced through-bond energy transfer occurred in such triblock copolymer systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2410–2424, 2007 相似文献
2.
GUO Bo SUN XiaoYi ZHOU YongFeng & YAN DeYue College of Chemistry Chemical Engineering Shanghai Jiao Tong University Shanghai China 《中国科学:化学》2010,(3)
A novel temperature-responsive hyperbranched multiarm copolymer with a hydrophobic hyperbranched poly(3-ethyl-3-(hydroxymethyl)oxetane)(HBPO) core and thermosensitive poly(N-isopropylacrylamide)(PNIPAM) arms was synthesized via the atom transfer radical polymerization(ATRP) of NIPAM monomers from a hyperbranched HBPO macroinitiator.It was found that HBPO-star-PNIPAM self-assembled into multimolecular micelles(around 60 nm) in water at room temperature according to pyrene probe fluorescence spectrometry,1H N... 相似文献
3.
通过同轴圆筒剪切仪和磁子搅拌方式提供的剪切流场,研究了均匀和非均匀流场对ABA两亲性三嵌段共聚物囊泡的影响.研究发现,非均匀流场下囊泡尺寸及其分散度随剪切速率的增加呈现先增大后减小的规律.与搅拌形成的非均匀流场相比,在同轴剪切仪提供的均匀流场下形成的囊泡尺寸更加均匀.结果表明,剪切流场是影响囊泡形貌的重要因素,流场的不均匀性是导致组装体形貌结构多分散性的重要原因之一. 相似文献
4.
5.
Linear ethylene oxide-dimethylsiloxane PEO-PDMS-PEO triblock copolymers have been synthesized by hydrosilation of ,-dihydropoly(dimethylsiloxane)
) and -methyl--propargylpoly(ethylene oxide)
. Studies by optical microscopy, complementary small-angle x-ray scattering (SAXS), and differential scanning calorimetry (DSC) have shown that the copolymers mixed with water are characterized by lyotropic liquid crystalline phases according to composition and temperature. The binary phase diagrams with varying copolymer composition are reported. 相似文献
6.
Amilcar Pillay Narrainen Sagrario Pascual David M. Haddleton 《Journal of polymer science. Part A, Polymer chemistry》2002,40(4):439-450
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)x‐b‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122 相似文献
7.
Xinde Tang Longcheng Gao Xinghe Fan Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2007,45(22):5190-5198
The effect of the terminal substituent of azobenzene on the properties of ABA triblock copolymers was investigated. For this study, three kinds of azobenzene‐containing monomers with different terminal substituents—6‐[4‐(4‐methoxyphenylazo)phenoxy] hexyl methacrylate, 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate, and 6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate—were used to synthesize ABA triblock copolymers PMMAzo25–PEG13–PMMAzo25/PMMAzo12–PEG13–PMMAzo12, PEMAzo14–PEG13–PEMAzo14, and PNMAzo14–PEG13–PNMAzo14, respectively, by atom transfer radical polymerization (PMMAzo is poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate}, PEMAzo is poly{6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate}, and PNMAzo is poly{6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate}). These copolymers were characterized with 1H NMR spectroscopy and gel permeation chromatography and exhibited controlled molecular weights and narrow molecular weight distributions. Differential scanning calorimetry and polarizing optical microscopy showed that these copolymers had mesophases. PMMAzo25–PEG13–PMMAzo25 and PMMAzo12–PEG13–PMMAzo12 had a smectic mesophase and a nematic mesophase, whereas both PEMAzo14–PEG13–PEMAzo14 and PNMAzo14–PEG13–PNMAzo14 had a nematic mesophase. This demonstrated that the liquid‐crystalline properties of these copolymers highly depended on the terminal substituent of azobenzene. The photoresponsive behavior of these copolymers was also investigated in tetrahydrofuran solutions, and the influence of the terminal substituents attached to azobenzene was studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5190–5198, 2007 相似文献
8.
Xinde Tang Longcheng Gao Xinghe Fan Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2007,45(11):2225-2234
ABA-type amphiphilic triblock copolymers composed of poly(ethylene glycol)s (PEGs) with different number-average molecular weights as the hydrophilic blocks (B) and poly{6-[4-(4-ethoxyphenylazo)phenoxy]hexyl methacrylate} (PA6C) as the hydrophobic blocks (A) were prepared via atom transfer radical polymerization. These copolymers were prepared from bromo-terminated macroinitiators based on PEG6000, PEG2000, and PEG600, with CuBr/N,N,N′,N″,N″-pentamethyldiethylenetriamine as the catalytic system, at 85 °C in anisole. The block copolymers were characterized with 1H NMR spectroscopy and gel permeation chromatography. Differential scanning calorimetry measurements were performed to reveal the phase segregation. In contrast to those polymers with similar compositions and structures in previous reports, these amphiphilic copolymers exhibited unusual liquid-crystalline properties over a wide temperature range, being stable even at room temperature. These copolymers showed photoresponsive isomerization under the irradiation of UV–vis light both in THF solutions and in solid films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2225–2234, 2007 相似文献
9.
Kozo Matsumoto Ryuji Nishimura Hiroaki Mazaki Hideki Matsuoka Hitoshi Yamaoka 《Journal of polymer science. Part A, Polymer chemistry》2001,39(21):3751-3760
Fluorine‐containing amphiphilic ABA triblock copolymers, poly(2‐hydroxyethyl vinyl ether)‐block‐poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether]‐block‐poly(2‐hydroxyethyl vinyl ether) [poly(HOVE‐b‐PFPOVE‐b‐HOVE)] (HFH), poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether]‐block‐poly(2‐hydroxyethyl vinyl ether)‐block‐poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether] [poly(PFPOVE‐b‐HOVE‐b‐PFPOVE)] (FHF), and poly(n‐butyl vinyl ether)‐block‐poly(2‐hydroxyethyl vinyl ether)‐block‐poly(n‐butyl vinyl ether) [poly(NBVE‐b‐HOVE‐b‐NBVE)] (LHL), were synthesized, and their behavior in water was investigated. The aforementioned polymers were prepared by sequential living cationic polymerization of 2‐acetoxyethyl vinyl ether (AcOVE) and PFPOVE or NBVE, followed by hydrolysis of acetyl groups in polyAcOVE. FHF and LHL formed a hydrogel in water, whereas HFH gave a homogeneous aqueous solution. In addition, the gel‐forming concentration of FHF was much lower than that of corresponding LHL. Surface‐tension measurements of the aqueous polymer solutions revealed that all the triblock copolymers synthesized formed micelles or aggregates above about 1.0 × 10?4 mol/L. The surface tensions of HFH and FHF solutions above the critical micelle concentration were lower than those of LHL, indicating high surface activity of fluorine‐containing triblock copolymers. Small‐angle X‐ray scattering measurements revealed that HFH formed a core‐shell sperical micelle in 1 wt % aqueous solutions, whereas the other block copolymers caused more conplicated assembly in the solutions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3751–3760, 2001 相似文献
10.
S. Y. Lehman L. E. McNeil R. J. Albalak 《Journal of Polymer Science.Polymer Physics》2000,38(16):2170-2178
The use of the relaxation function is widespread in the study of polymer dynamics. Since the popular empirical KWW relaxation function consistently underestimates dielectric loss at high frequency, several models dealing explicitly with intermolecular cooperativity have been proposed as alternatives. In this article, the domain model proposed by Matsuoka, previously used only to analyze dielectric relaxation results, is used to analyze Brillouin light scattering results from polystyrene–polybutadiene–polystyrene triblock copolymers. A single relaxation time analysis and the KWW model are both compared to the domain model. Neither of these models fits the Brillouin data well. The single relaxation time analysis gives a physically unrealistic results; the KWW analysis fits the data at low frequency, but fails in the high-frequency region by underestimating the attenuation. The domain model fits the Brillouin data well over the entire temperature/frequency range. The results show that in order to understand the full range of dynamics in these materials and in polymeric materials in general, the KWW model is insufficient due to its underestimation of attenuation at high frequency. A model including cooperative motion is crucial to fully understand polymer dynamics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2170–2178, 2000 相似文献
11.
A novel amphiphilic copolymer poly(ethylene glycol)-block-poly(N,N-dimethylamino-2-ethylmethacrylate)-blockpoly[6-(4-methoxy-azobenzene-4’-oxy) hexyl methacrylate](PEG-b-PDMAEMA-b-PMMAzo) was prepared by ATRP polymerization.The self-assembly and responsive behaviors were investigated by SEM,TEM,LLS and UV-Vis spectra.The results indicated that the copolymers can self-assemble into spherical structures in aqueous media.The aggregate size can be tuned by pH and temperature.The trans-cis isomerization behavior of the formed aggregates was also examined.Upon irradiation with a linear polarized light,the elongation degree of the aggregates was increased with the irradiation time. 相似文献
12.
Well-defined p H-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers(PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization(ATRP),ring opening polymerization(ROP) and "click" chemistry.Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy(FTIR),proton nuclear magnetic resonance(1H-NMR),and gel permeation chromatography(GPC).Then,the polymers could selfassemble into micelles in aqueous solution,which was demonstrated by dynamic light scattering(DLS) and transmission electron microscopy(TEM).The p H-responsive self-assembly behavior of these copolymers in water was investigated at different p H values of 7.4 and 5.0 for controlled doxorubicin(DOX) release,and these results revealed that the release rate of DOX could be effectively controlled by altering the p H,and the release of drug loading efficiency(DLE) was up to 88%(W/W).CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility,whereas the DOX-loaded micelles remained with high cytotoxicity for He La cells.Moreover,confocal laser scanning microscopy(CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect.The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX.These results successfully indicated that p H-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release. 相似文献
13.
Shaheen Motala-Timol 《European Polymer Journal》2007,43(7):3042-3049
The synthesis of ABA triblock copolymers of the type PDMAEMA-PCL-PDMAEMA was achieved by atom transfer radical polymerization (ATRP) of DMAEMA using difunctional polycaprolactone (PCL) as macroinitiator. First, ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) was carried out in the presence of 1,2-diaminoethane/tin (II) octanoate. Dihydroxy PCL thus obtained was end-functionalized in a quantitative manner using 2-bromoisobutyryl bromide. The resulting Br-PCL-Br was used as macroinitiator in the ATRP of DMAEMA leading to triblock copolymers with PCL as the central block and PDMAEMA sequences of different lengths. NMR and SEC analyses confirmed the formation of ABA triblocks. 相似文献
14.
The isothermal crystallisation behaviour of the polyethylene block within polystyrene-b-polyethylene-b-poly(ε-caprolactone), SEC, triblock copolymers was studied by differential scanning calorimetry. The morphology was observed by transmission electron microscopy. Melting scans after isothermal crystallisation performed at different times were employed to determine the crystallisation kinetics one step at a time (“isothermal step crystallisation”). Double melting endotherms were observed after isothermal crystallisation and they were interpreted as a result of the melting of two lamellar populations. These arise from the intrinsic short chain branching distribution within the hydrogenated polybutadiene chains that conform the PE blocks and from their location within the copolymer microdomains. The Hoffman-Weeks procedure failed to yield reasonable values for the equilibrium melting point of the PE blocks as a result of the distribution of linear sequences present in these blocks. The results indicate that as the degree of PE confinement increases the Avrami index decreases to values that are even lower than 1, a result that can be explained by the nature of the homogeneous nucleation process that is in between sporadic and instantaneous. 相似文献
15.
Pei‐Hong Ni Ming‐Zu Zhang Lan‐Jian Zhuge Shou‐Kuan Fu 《Journal of polymer science. Part A, Polymer chemistry》2002,40(21):3734-3742
Polystyrene microlatexes have been prepared by conventional emulsion polymerization with a novel amphiphilic water‐soluble ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]15‐b‐poly(propylene oxide)36‐b‐poly[2‐(dimethyl‐amino)ethyl methacrylate]15 (PDMAEMA15‐PPO36‐PDMAEMA15), as a polycationic emulsifier under acidic or neutral conditions. The ABA triblock copolymer was developed by oxyanion‐initiated polymerization in our laboratory. In this study, it acted well both as a polycationic polymeric surfactant to form block copolymeric micelles for emulsion polymerization and as a stabilizer to be anchored into the polystyrene microlatex or adsorbed onto its surface. The results obtained with various copolymer concentrations and different pH media showed that microlatex diameters decreased remarkably with increased concentration of this ABA triblock copolymeric emulsifier, but were not as much affected by the pH of media within the experimental range of 3.4–7.0. The observed difference of the particle sizes from transmission electron microscopy and dynamic light scattering measurements is discussed in terms of the effect of the absorbed surfactants and their electrical double layers. This difference has led to the formation of a cationic polyelectrolyte fringe on the surface of microspheres. The final microlatexes were characterized with respect to total conversion, particle diameter, and particle size distribution as well as colloidal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3734–3742, 2002 相似文献
16.
Alexandra Muoz‐Bonilla María L. Cerrada Marta Fernndez‐García 《Journal of polymer science. Part A, Polymer chemistry》2005,43(20):4828-4837
The syntheses of triblock copolymers by the atom transfer radical polymerization of tert‐butyl and iso‐butyl acrylates as inner blocks with cyclohexyl methacrylate as outer blocks are reported. The living behavior and blocking efficiency of these polymerizations were investigated in each case. The use of difunctional macroinitiators led to ABA triblock copolymers with narrow polydispersities and controlled number‐average molecular weights. These copolymers were prepared from bromo‐terminated macroinitiators of poly(tert‐butyl acrylate) and poly(iso‐butyl acrylate), with copper chloride/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalytic system, at 40 °C in 50% (v/v) toluene solutions. The block copolymers were characterized with size exclusion chromatography and 1H NMR spectroscopy. Differential scanning calorimetry measurements were performed to reveal the phase segregation. The glass transition of the inner block was not clearly detected, with the exception of the copolymer synthesized with the longest poly(iso‐butyl acrylate) macroinitiator length. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4828–4837, 2005 相似文献
17.
A set of amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) (PEG-b-PEB) copolymers based on the PEB hydrophobic block was first synthesized by ring-opening polymerization of ethylene brassylate with an organic catalyst. The EB/PEGmolar ratios and reaction times were adjusted to achieve different chain lengths of PEB. Block copolymers that were characterized by 1H NMR and GPC could selfassemble into multimorphological aggregates in aqueous solution, which were characterized by DLS and TEM. The hydrophobic doxorubicin (DOX) was chosen as a drug model and successfully encapsulated into the nanoparticles. The release kinetics of DOX were investigated. 相似文献
18.
19.
M. Thunga U. Staudinger B. K. Satapathy R. Weidisch M. Abdel‐Goad A. Janke K. Knoll 《Journal of Polymer Science.Polymer Physics》2006,44(19):2776-2788
The influence of middle and outer block composition of symmetric triblock copolymers consisting of a polystyrene–polybutadiene (S/B) random middle block and two polystyrene (PS) outer blocks on morphology and rheological behavior has been investigated. Master curves are obtained by shifting the experimental data measured at different temperatures using time‐temperature superposition principle, the validity of which was confirmed in the linear viscoelastic regime. The rheological properties are observed to be strongly influenced by the relative composition of the S‐SB‐S triblock copolymers. Increasing the S/B ratio from 1:1 to 1:2 in the middle block has lead to a change in morphology from wormlike to lamellar, which is also accompanied with broad and sharp tan δ peaks in the dynamic mechanical measurements, respectively. The storage and loss modulus have been observed to increase with the increase in PS contents in the outer blocks and PB content in the middle block. The triblock copolymer with wormlike structure showed terminal linear viscoelastic behavior, whereas the ones with lamellar morphology showed nonterminal flow behavior in the similar low‐frequency regime. The relaxation modulus (Gt) has been observed to increase four times when the S/B ratio is increased from 1:1 to 1:2, whereas it increases threefold when the PS‐content in the outer block was increased by just 8 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2776–2788, 2006 相似文献
20.
Yasumasa Nishiwaki Kazunari Masutani Yoshiharu Kimura Chan-Woo Lee 《Journal of polymer science. Part A, Polymer chemistry》2020,58(6):860-871
Bis-hydroxyl-terminated poly(1,2-propylene succinate) (PPS-diols) with high molecular weight (10–40 kDa) are prepared by two-step melt polycondensation of succinic acid and 1,2-propanediol with Ti(BuO)4 as the catalyst. By using these PPS-diols as macroinitiators, the ring-opening polymerization of d - and l -lactides is readily conducted to obtain enantiomeric ABA triblock copolymers consisting of poly(l -lactide) and PPS (B) (t-l -PPS) as well as those of poly(d -lactide) and PPS (B) (t-d -PPS) which have higher PPS compositions (20–70 wt%) in addition to high molecular weight (20–80 kD). The Tg, Tm, and ΔHm values of the t-l -PPS copolymers as well as the stereo mixtures of t-l -PPS/t-d -PPS are controlled to linearly decrease with increasing the PPS content. The copolymers also exhibit higher elastomeric properties with increasing the PPS content. The tensile properties of the copolymer films having higher PPS contents (both the single block copolymers and stereo mixtures) are comparable to those of the oil-based thermoplastic elastomers. It is therefore concluded that these block copolymers can afford thermoplastic elastomers or flexible plastic materials having a 100% biobased content. 相似文献