首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyethylene(PE)/clay nanocomposites have been successfully prepared by in situ polymerization with an intercalation catalyst titanium-montmorillonite (Ti-MMT) and analyzed by X-ray diffraction analysis (XRD), Fourier transform infrared analysis (FT-IR), Transmission electron microscopy (TEM), differentail scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and tensile testing. XRD and TEM indicate that the clay is exfoliated into nanometer size and disorderedly dispersed in the PE matrix, and the PE crystallinity of PE/clay nanocomposite declines to 15∼30%. Compared with pure PE, PE/clay nanocomposites behave higher thermal, physical and mechanical properties; the layer structure of the clay decreases the polymerization activity and produce polymer with a high molecular weight. For PE/clay nanocomposites, the highest tensile strength of 33.4 MPa and Young's modulus of 477.4 MPa has been achieved when clay content is 7.7 wt %. The maximum thermal decomposition temperature is up to 110 °C higher, but the thermal decomposition temperature of the PE/clay nanocomposites decreases with the increases of the clay contents in the PE matrix.  相似文献   

2.
Polypropylene/surface modified clay nanocomposites were prepared by melt intercalation in twin-screw extruder followed by blown film extrusion. The effects of organically modified clay on the physical, mechanical, thermal and morphological properties of the prepared nanocomposites were studied. The results showed that 95% enhancement in tensile strength and 152% increase in tensile modulus was observed. TGA analysis in inert atmosphere showed an 87 °C marked increase in the thermal degradation temperature. The DSC curve showed the melting point was increased 4 °C in presence of clay in the matrix owing to the fact that the filler acts as reinforcing effect. The dynamic mechanical analysis (DMA) results showed improvement in storage modulus from 9.76 × 103 to 1.12 × 104 MPa with the incorporation of organically modified clay and thus enhanced its stiffness. The morphology of the nanocomposites was further studied using scanning electron microscopy (SEM). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) which confirmed the exfoliation structure of the nanocomposites.  相似文献   

3.
The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre–matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre–matrix networks.  相似文献   

4.
In the present paper, starch-based biocomposites have been prepared by reinforcing corn starch matrix with mercerized Abelmoschus esculentus lignocellulosic fibers. The effect of fiber content on mechanical properties of composite was investigated and found that tensile strength, compressive strength, and flexural strength at optimum fiber content were 69.1%, 93.7% and 105.1% increased to that of cross-linked corn starch matrix, respectively. The corn starch matrix and its composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TGA) analysis. The fiber reinforced composites were found to be highly thermal stable as compared to natural corn starch and cross-linked corn starch matrix. Further, water uptake and biodegradation studies of matrix and composites have also been studied.  相似文献   

5.
The thermal properties and fire behaviour of polypropylene (PP) nanocomposites were investigated using differential scanning calorimetry, dynamic-mechanical analysis, thermogravimetric analysis and glow wire test. In order to study the morphological structure of the materials obtained, TEM and XRD analyses were also carried out. The nanocomposites were prepared using the melt intercalation technique in a co-rotating intermeshing twin screw extruder. Particular attention was given to studying the influence of different processing conditions (barrel temperature profile and screw rate) and compositions of PP-nanoclay blends (clay content, use of compatibiliser) on the thermal properties of the nanocomposites.The results show that all the properties analysed were strongly influenced by the nanocomposite composition; instead, the processing conditions greatly affect only the dynamic-mechanical properties. DSC curves show that the crystallinity is deeply influenced by the presence of the clay in the matrix, owing to the fact that the filler acts as nucleating agent. DMA curves show that materials processed at low temperature profile and high shear stress, i.e. when a good clay dispersion is achieved, are characterised by an enhanced modulus, thus indicating that the incorporation of clay into the PP matrix remarkably enhances its stiffness and has good reinforcing effects. TGA traces in oxidizing atmosphere show a drastic shift of the weight loss curve towards higher temperature and no variation of the onset temperature (i.e. the temperature at which degradation begins). The TGA analyses in inert atmosphere show instead marked increase of this parameter (about 200 °C) and no shift of weight loss curves. Glow wire results highlight that polymer nanocomposites are characterised by enhanced fire behaviour.  相似文献   

6.
The morphology and thermal properties of Allylisobutyl Polyhedral Oligomeric Silsesquioxane (POSS)/Polybutadiene (PB) nanocomposites prepared through anionic polymerization technique were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and TEM showed that the aggregation of POSS in PB matrix occurred obviously, forming crystalline domains and the size of POSS particles increased with increasing POSS content. The DSC and TGA results indicated that the glass transition temperature (T g) of the nanocomposites was significantly increased and the maximum degradation temperature (T dmax) of nanocomposites was slightly increased compared with pure PB, implying an increase in thermal stability.  相似文献   

7.
In this study, nanohydroxyapatite/polyurethane (nHA/PU) composites with various contents of methoxy- poly(ethylene glycol) modified nHA (0 wt%, 10 wt%, 20 wt% and 30 wt%) were prepared by solution blending process. The physicochemical properties of the composite membranes were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electronic microscopy (TEM), Differential scanning calorimetry (DSC), Thermo gravimetric analysis (TGA) and tensile tests. TEM photos of the nanocomposites showed that the nHA was uniformly dispersed in the polymer matrix. The membrane with 10 wt% nHA showed the highest tensile strength which was about 75% higher than that of the pure PU membrane. However, the tensile strength decreased when high content (above 20 wt%) fillers were added, which was still higher than that of pure PU. TGA measurements suggested that the thermal stability of the membranes was improved owing to nHA fillers. XRD and DSC results illustrated that the crystallinity of PU soft segments decreased with the increasing content of nanoparticles in the composites.  相似文献   

8.
由离子交换法制备4,4′-偶氮二(4-氰基戊酸)根(ACP)单独插层和ACP/对苯乙烯磺酸根(VBS)复合插层的层状双金属氢氧化物(LDH),再通过原位悬浮聚合制得聚苯乙烯(PS)/LDH纳米复合材料,对插层改性LDH和复合材料进行了结构和性能表征.X-射线衍射和元素分析表明ACP可以单独或与VBS一起插入到LDH层间.透射电镜和X-射线衍射分析表明采用ACP/VBS复合插层LDH与苯乙烯原位聚合得到的复合材料中LDH剥离程度高,熔融加工后LDH基本以纳米层板形式分散在PS基体中.LDH的引入可明显提高PS的热稳定性,而熔体流动性下降.  相似文献   

9.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability and low glass transition temperatures (Tg) have limited its applications. To improve the thermal properties of PPC, organophilic montmorillonite (OMMT) was mixed with PPC by a solution intercalation method to produce nanocomposites. An intercalated-and-flocculated structure of PPC/OMMT nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal and mechanical properties of PPC/OMMT nanocomposites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), and electronic tensile tester. Due to the nanometer-sized dispersion of layered silicate in polymer matrix, PPC/OMMT nanocomposites exhibit improved thermal and mechanical properties than pure PPC. When the OMMT content is 4 wt%, the PPC/OMMT nanocomposite shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC.  相似文献   

10.
Two methacrylate‐modified clays have been prepared and used to produce nanocomposites of polystyrene and poly(methyl methacrylate) by in situ polymerization. These nanocomposites have been characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), cone calorimetry and the evaluation of mechanical properties. When the clay contains only a single methacrylate unit, the styrene system is exfoliated but methacrylate is intercalated. When two methacrylate units are present on the cation of the clay, both systems are exfoliated. TGA data show that the thermal stability of all the nanocomposites is improved, as expected. The relationships between the fire properties and nanostructure of the nanocomposites are complicated, as shown by cone calorimetry. The conclusions that one may reach using cone calorimetry do not completely agree with those from XRD and TEM. The evaluation of mechanical properties shows an increase in Young's modulus for all nanocomposites along with a decrease in elongation; tensile strength is decreased for methacrylate nanocomposites but increased for styrenics systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Polyimide/montmorillonite nanocomposites with photolithographic properties (PSPI/MMT) were prepared by in situ polymerization using an intrinsic photosensitive polyimide (PSPI) based on 4,4-diamino-3,3-dimethyldiphenylmethane (MMDA) and benzophenone-3,3,4,4-tetracarboxylic dianhydride (BTDA). XRD, TEM were used to obtain the information on morphological structure of PSPI/MMT nanocomposites. The exfoliated structure was obtained in the MMT content range studied. Satisfactory photolithographic patterns were obtained when the MMT content was below 2 wt.%. Universal tester, TGA, DSC were applied to characterize the mechanical and thermal properties of the nanocomposites. The introduction of MMT led to increase in tensile strength to the PSPI matrix while the elongation at break was not obviously effected. The introduction of MMT also resulted in improved thermal stability, marked decrease in coefficient of thermal expansion, decrease in solvent uptake, slight increase in glass transition temperature and increase in modulus.  相似文献   

12.
Summary: Cellulose nanocrystals (CNC) were extracted from Kraft pulp of Eucalyptus urograndis. The CNC were isolated by acid hydrolysis with H2SO4 64% (w/w) solution, for 20 minutes at 45 °C. The morphology and crystallinity of the CNC were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The AFM image supports the evidence for the development of crystals of cellulose in nanometric scale. These nanoparticles were used as reinforcement material in carboxymethyl cellulose (CMC) matrix. Nanocomposites films were prepared by casting. The nanocomposites were characterized by thermal (TGA) and mechanical (DMA) analyses. A large reinforcing effect of the filler was observed. The tensile strength of nanocomposites was significantly improved by 107%, the elongation at break decreased by 48% and the thermal resistance increased slightly. The improvements in thermo-mechanical properties suggest a close association between filler and matrix.  相似文献   

13.
This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide(ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate)(PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH(3 wt%?7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), rheological analysis, differential scanning calorimetry(DSC) and thermo gravimetric analysis(TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature(Tg) of around 3 K. The activation energy(Ea), reaction orders(n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.  相似文献   

14.
Abstract

Vegetable oil based environmentally friendly polyurethane-TiO2 nanocomposite coatings have been synthesized by using sunflower oil derived diol, toluene diisocyanate and TiO2 nanoparticles. The chemical structure was confirmed by FTIR and NMR techniques while physico-chemical testing was carried out by standard laboratory methods. Physico-mechanical and anticorrosive tests of the coatings (in different corrosive media) have been investigated by standard methods. In addition to this the morphology and thermal stability behavior of the coatings have been carefully investigated by different techniques like XRD, TEM, TGA/DTG and DSC. The comparison of the performance of nanocomposites with the respective virgin polyurethane coatings reveals that the dispersion of nanoTiO2 enhanced the mechanical, corrosion and thermal stability behavior of the polymer. The synthesized nanocomposites can be used safely upto 250–275?°C. These sunflower oil derived polyurethane nanocomposites can be used in the world of protective coatings, as an alternative of petroleum derived corrosion protective coating materials.  相似文献   

15.
Morphology and properties of waterborne polyurethane/clay nanocomposites   总被引:4,自引:0,他引:4  
Aqueous emulsion of polyurethane ionomers, based on poly(tetramethylene glycol) or poly(butylene adipate) as soft segment, isophorone diisocyanate as diisocyanate, 1,4-butandiol as chain extender, dimethyl propionic acid as potential ionic center, triethylene tetramine as crosslinker, and triethyl amine as neutralizer, were reinforced with organoclay to give nanocomposites. The particle size of emulsion was measured and the morphology of these nanocomposites was observed by transmission electron microscope, where the effectively intercalated or exfoliated organoclay was observed. The reinforcing effects of organoclay in mechanical properties of these nanocomposites were examined by dynamic mechanical and tensile tests, and the Shore A hardness was measured. Enhanced thermal and water resistance and marginal reduction in transparency of these nanocomposites were observed compared with pristine polymer.  相似文献   

16.
Polyurethane (PU) has been prepared by using polyether polyol (jagropol oil) and 1,6- hexamethylene diisocyanate (HMDI) as a cross-linker. The organically modified montmorillonite clay (MMT) is well-dispersed into urethane matrix by an in situ polymerization method. A series of PU/MMT nanocomposites have been prepared by incorporating varying amounts of nanoclay viz., 1, 3, 5 and 6 wt %. Thermogravimetric analysis (TGA) of the PU/MMT nanocomposites has been performed in order to establish the thermal stability and their mode of thermal degradation. The TGA thermograms exhibited the fact that nanocomposites have a higher decomposition temperature in comparison with the pristine PU. It was found that the thermal degradation of all PU nanocomposites takes place in three steps. All the nanocomposites were stable up to 205°C. Degradation kinetic parameters of the composites have been calculated for each step of the thermal degradation processes using three mathematical models namely, Horowitz–Metzger, Coats–Redfern and Broido's methods.  相似文献   

17.
This study describes the preparation of poly(?-caprolactone) (PCL)/multi-walled carbon nanotube (MWCNT) composites by ultrasonically mixing the PCL and as-fabricated MWCNT in a tetrahydrofuran solution. The TEM images show that the MWCNT is well separated and uniformly distributed in the PCL matrix. Differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and polarized optical microscopy (POM) were used to investigate the isothermal crystallization kinetics, crystalline structure and thermal behavior of PCL and PCL/MWCNT nanocomposites. DSC isothermal results revealed that the activation energy of PCL extensively decreases with increasing MWCNT contents, suggesting that the loading of MWCNT into PCL matrix probably induced heterogeneous nucleation during crystallization processes. From TGA data, the addition of small amount of MWCNT into PCL matrix can improve the thermal stability of PCL matrix. TGA isothermal degradation data illustrate that the activation energy Ed of the composites is smaller than that of PCL. This phenomenon can be attributed to the incorporation of more MWCNT loading into PCL caused a decrease in the degradation rate and an increase in the residual weight for PCL/MWCNT nanocomposites.  相似文献   

18.
The effects of reprocessing cycles on the structure and properties of isotactic polypropylene (PP)/Cloisite 15A (OMMT) (5 wt. %) nanocomposites was studied in presence of maleic anhydride-grafted-polypropylene (PP-g-MA) (20 wt. %) used as the compatibiliser to improve the clay dispersion in the polymer matrix. The various nanocomposite samples were prepared by direct melt intercalation in an internal mixer, and further they were subjected to 4 reprocessing cycles. For comparative purposes, the neat PP was also processed under the same conditions. The nanocomposite structure and the clay dispersion have been characterized by wide angle X-ray scattering (WAXS), transmission electron microscopy (TEM) and rheological measurements. Other characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), tensile measurements, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have also been used to evaluate the property changes induced by reprocessing. The study showed through XRD patterns that the repetitive reprocessing cycles modified the initial morphology of PP/OMMT nanocomposites by improving the formation of intercalated structure, especially after the fourth cycle. Further, the addition of PP-g-MA promoted the development of intercalated/exfoliated silicate layers in the PP matrix after the second cycle. These results are in agreement with TEM observations indicating an improved silicate dispersion in the polymer matrix with reprocessing cycles displaying a morphology with both intercalated/exfoliated structures. The initial storage modulus (G′) of the nanocomposites, which was highly improved in presence of PP-g-MA seems to be less affected by reprocessing cycles at very low frequencies exhibiting a quasi-plateau compared to pristine PP/OMMT and PP. In contrast, the complex viscosity was found to decrease for the whole samples indicating that the main effect of reprocessing was a decrease in the molecular weight. Moreover, the thermal and mechanical properties of the nanocomposites were significantly reduced after the first cycle; nevertheless they remained almost unchanged during recycling. No change in the chemical structure was observed in the FT-IR spectra for both the nanocomposites and neat PP samples after 4 cycles.  相似文献   

19.
A reactive extrusion process was developed to fabricate polymer/graphene nanocomposites with good dispersion of graphene sheets in the polymer matrix. The functionalized graphene nanosheet (f‐GNS) activated by diphenylmethane diisocyanate was incorporated in thermoplastic polyester elastomer (TPEE) by reactive extrusion process to produce the TPEE/f‐GNS masterbatch. And then, the TPEE/f‐GNS nanocomposites in different ratios were prepared by masterbatch‐based melt blending. The structure and morphology of functionalized graphene were characterized by Fourier transform infrared, X‐ray photoelectron spectroscopy, X‐ray diffraction and transmission electron microscopy (TEM). The incorporation of f‐GNS significantly improved the mechanical, thermal and crystallization properties of TPEE. With the incorporation of only 0.1 wt% f‐GNS, the tensile strength and elongation at break of nanocomposites were increased by 47.6% and 30.8%, respectively, compared with those of pristine TPEE. Moreover, the degradation temperature for 10 wt% mass loss, storage modulus at ?70°C and crystallization peak temperature (Tcp) of TPEE nanocomposites were consistently improved by 17°C, 7.5% and 36°C. The remarkable reinforcements in mechanical and thermal properties were attributed to the homogeneous dispersion and strong interfacial adhesion of f‐GNS in the TPEE matrix. The functionalization of graphene was beneficial to the improvement of mechanical properties because of the relatively well dispersion of graphene sheets in TPEE matrix, as suggested in the TEM images. This simple and effective approach consisting of chemical functionalization of graphene, reactive extrusion and masterbatch‐based melt blending process is believed to offer possibilities for broadening the graphene applications in the field of polymer processing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Aramid–organoclay nanocomposites were fabricated through solution intercalation technique. Montmorillonite was modified with p-amino benzoic acid in order to have compatibility with the matrix. The effect of clay dispersion and the interaction between clay and polyamide chains on the properties of nanocomposites were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), tensile testing of thin films, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and water uptake measurements. Excessive clay dispersion was achieved even on the addition of high proportions of clay. The structural investigations confirmed the formation of delaminated nanostructures at low clay contents and disordered intercalated morphology at higher clay loadings. The tensile behavior and thermal stability significantly amplified while permeability reduced with increasing dispersibility of organoclay in the polyamide matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号