首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bio-blend films were prepared with sago starch and N-vinyl-2-pyrrolidone (NVP) by the casting method, varying the concentrations of sago starch (100 to 93%) and NVP (0 to 7%). The formulations were designated as F1 (starch 100%), F2 (starch 97%), F3 (starch 95%), and F4 (starch 97%). The highest tensile strength (TS), tensile modulus (TM), and elongation at break (Eb%) were found correspondingly to be 30.47 MPa, 407.74 MPa, and 8.25% for the F3 formulation. Gamma radiation was applied to films to modify their performance through grafting and cross-linking. The highest TS, TM, and Eb% were found at 500 krad dose and they were 38.12 MPa, 481.00 MPa, and 9.78%, respectively for F3 formulation. The water uptake nature and thermal properties of the treated and untreated films were also investigated.  相似文献   

2.
Chitosan films were prepared by casting from its 1% (w/w) solution. Tensile strength (TS) and tensile modulus (TM) of chitosan films were found to be 30 MPa and 450 MPa, respectively. Silane monomer (3-aminopropyl tri-methoxysilane) (0.25%, w/w) was added into the chitosan solution (1%, w/w) and films were casted. Then films were exposed to gamma radiation (5–25 kGy) and mechanical properties were investigated. It was found that at 10 kGy, the values of TS and TM were improved significantly. Silane grafted chitosan film reinforced poly(caprolactone) (PCL)-based tri-layer composites were prepared by compression molding. Silane improved interfacial adhesion between chitosan and PCL in composites. Surface of the films was investigated by scanning electron microscope (SEM) and found better morphology for silane grafted films.  相似文献   

3.
β-Cyclodextrin (βCD) and its soluble polymeric derivative (EPIβCD) were used to improve the effectiveness of chitosan-based bucco-adhesive film formulations containing bupivacaine hydrochloride and triclosan as poorly-soluble model drugs. The film formulations were characterized in terms of swelling, mucoadhesion and in vitro drug release, while possible interactions between the components were investigated by DSC and FTIR analyses. For both drugs EPIβCD showed a higher solubilizing efficiency than βCD; however cyclodextrin effectiveness in improving the release rate from film formulations was influenced by their different interactions with chitosan. Free βCD acted as a channelling agent, favouring the film swelling, while EPIβCD due to interaction with chitosan caused an opposite effect. βCD was the optimal partner for bupivacaine-loaded films in terms of film swelling, mucoadhesion and drug release. Contrariwise, EPIβCD was the best partner for triclosan-loaded films, allowing the highest drug release rate increase, due to its higher solubilizing ability with respect to βCD. Addition of the suitable cyclodextrin enabled formulation of buccal films with suitable drug release properties.  相似文献   

4.
In this study the mechanical properties of shellac films, prepared by solution casting, were evaluated with varying amounts of Ethylene Glycol (EG) and 2-Ethyl-2-(hydroxymethyl)-1,3-propandiol-trimethacrylate (EHMPTMA). Mechanical properties such as tensile strength (TS) and elongation at break (Eb) of the raw shellac film were found to be 1.86 MPa and 4%, respectively. A series of formulations was prepared using shellac and varying percentages of EG and EHMPTMA in methanol. The films were prepared and irradiated under gamma (Co-60) radiation at different doses (50–500 krad). Grafting of EHMPTMA showed better results compared to raw shellac and EG treated films. Thermal properties, degradation tests in water and soil of the films were also evaluated.  相似文献   

5.
Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.  相似文献   

6.
壳聚糖氧化自组装膜的制备及其性能   总被引:1,自引:0,他引:1  
由高碘酸钠和壳聚糖溶液反应,成功制备出壳聚糖氧化自组装膜。采用傅立叶变换红外光谱(FTIR)和X射线衍射法对氧化自组装膜进行了结构表征,并对膜的吸水率及其力学性能进行了测试。当壳聚糖为3 g,而高碘酸钠加入量等于0.010 g时,得到壳聚糖氧化自组装膜的最佳的抗张强度,干膜为54.32 MPa,湿膜为29.11 MPa,相对壳聚糖膜分别提高了17.52%和26.78%;并且得到了最佳的阻水性,其吸水率为78.51%,相对于壳聚糖膜降低了6.88%。  相似文献   

7.
再生纤维素膜(甘蔗渣浆制)表面直接用紫外光固化聚氨酯-丙烯酸酯制备出防水性复合膜。由红外光谱和扫描电镜研究了复合膜的结构。同时,测定了膜的防水性、力学性能、水汽透过性和尺寸稳定性。实验结果表明,当聚氨酯:丙烯酸酯为40:55(质量比),在400W紫外光下固化5min制得的复合膜具有致密的表面结构和较好的性能,该膜经水浸泡后其断裂强度可达干膜的90%,浸水收缩率和膨胀率均小于2.5%,水汽渗透量仅为再生纤维素膜的1/4.由此表明复合膜的防水性和尺寸稳定性明显提高。此外,该复合膜在可见光区的透光率在80%~90%之间,而且对紫外光有屏蔽作用。  相似文献   

8.
Nano crystalline cesium (Cs) doped ZnO thin films were deposited on glass substrate by sol gel spin coating method with 1–3 mol.% doping concentration and different annealing temperatures. The deposited films were characterized by X-ray diffraction (XRD), Hall Effect, Photoluminescence (PL) and UV–Visible studies. XRD measurements reveal that all the samples abound in the wurtzite structure with polycrystalline nature. An increase in crystalline size from 19.60 to 44.54 nm is observed with the increase of doping concentration. Electrical conductivity of Cs doped ZnO films were observed from Hall effect measurements and the maximum carrier concentration obtained is 7.35 × 1018 cm?3. The near band emission (384 nm) peak intensity increases with the increase of Cs doping concentration and a maximum intensity 55,280 was observed for CZ3 film from PL spectrum. Also a low energy near infrared (NIR) emission peak centered at 1.62 eV appears for the Cs doped ZnO films. The average transmission of CZ film is 88 % and the absorption edge is red shifted with the increase of Cs doping concentration and also the optical conductivity increases in the UV region.  相似文献   

9.
A trehalose cinnamoyl ester (TC) was synthesized from trehalose and cinnamoyl chloride in dimethylformamide (DMF) in the presence of triethylamine and 4‐(N,N‐dimethylamino)pyridine. The product was characterized by 1H NMR spectroscopy to reveal that the reaction proceeded. Two different types of TCs were synthesized by changing the feed ratio of cinnamoyl chloride to trehalose. When the feed ratio of cinnamoyl chloride to trehalose was 8 (TC8), the degree of substitution (DS) was 8.0, while it was 4.2 when the feed ratio was 4 (TC4). Photocuring was confirmed by observing changes in UV absorption spectrum and FT Infrared (IR) spectrum. After 5 min of UV irradiation, solubility in chloroform significantly decreased. A transparent thin coating film of TC was easily prepared by casting from a chloroform solution on a Petri dish and UV irradiation was carried out over a simple photomask. After TC within the non‐irradiated region was removed by flash soaking with chloroform, the shape of the photomask appeared. A scanning electron microscope (SEM) measurement revealed that the surface of the photocured coating film was smooth and that the edge of the photocured TC had a characteristic feature. Biodegradation of the photocured TC and non‐irradiated TC was examined by the biochemical oxygen demand (BOD) method using activated sludge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
To improve the mechanical and antibacterial properties of traditional starch-based film, herein, cellulose nanocrystals (CNCs) and chitosan nanoparticles (CS NPs) were introduced to potato starch (PS, film-forming matrix) for the preparation of nanocomposite film without incorporation of additional antibacterial agents. CNCs with varied concentrations were added to PS and CS NPs composite system to evaluate the optimal film performance. The results showed that tensile strength (TS) of nanocomposite film with 0, 0.01, 0.05, and 0.1% (w/w) CNCs incorporation were 41, 46, 47 and 41 MPa, respectively. The elongation at break (EAB) reached 12.5, 10.2, 7.1 and 13.3%, respectively. Due to the reinforcing effect of CNCs, surface morphology and structural properties of nanocomposite film were altered. TGA analysis confirmed the existence of hydrogen bondings and electrostatic attractions between components in the film-forming matrix. The prepared nanocomposite films showed good antibacterial properties against both E. coli and S. aureus. The nanocomposite film, consist of three most abundant biodegradable polymers, could potentially serve as antibacterial packaging films with strong mechanical properties for food and allied industries.  相似文献   

11.
This study aims to optimize the formulation of composite films based on chicken skin gelatin with incorporation of rice starch (10–20%, w/w) and curcumin (0.03–0.10%, w/v). The effect of their interaction on film's tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP) and antioxidant properties (DPPH%) were investigated using a response surface methodology-central composite design (RSM-CCD). The optimized film formulation was further validated to indicate the validity of the prediction model. The optimum conditions of the film were selected with incorporation of rice starch at 20% (w/w) and curcumin at 0.03% (w/v). The optimized film formulation has revealed better mechanical properties with low WVP value and good antioxidant activity. The results showed that optimized composite films formulation based on chicken skin gelatin with the incorporation of rice starch and curcumin has proving good validation of model prediction and can be effectively utilized in food packaging industry.  相似文献   

12.
New mucoadhesive formulations were designed and studied in order to improve local vaginal therapy by increasing formulation retention prolonging thus drug-mucosa contact time. Some gels were prepared using hydroxyethylcellulose (HEC) alone or mixed with chitosan (CS) or its derivative 5-methyl-pyrrolidinone-chitosan (MPCS) and were loaded with the antibacterial metronidazole (MET) (0.75%). All formulations showed pseudoplastic flow and viscosity increase was observed proportionally to chitosan content (CS>MPCS). Prepared gels showed better extrusion properties (yield stress) than market formulation Zidoval. Mucoadhesion force studies permitted to point out that: (i) CS decreases mucoadhesion force; (ii) MPCS addition increases the mucoadhesion force at high percentage; (iii) all gels containing chitosan showed better mucoadhesive performances than Zidoval. Gels containing MPCS showed higher and faster drug release than those containing CS. All the preparations were able to release higher drug amounts if compared to market formulation. In conclusion MPCS improved gel characteristics in terms of mucoadhesion force, rheological behaviour and drug release pointing out that this modified chitosan is very suitable to obtain manageable and more acceptable vaginal formulation.  相似文献   

13.
This work evaluated such a cross-linked chitosan based controlled release device to be later used for sustained drug release. Cross linking was required to control chitosan swelling/deswelling rate. Hexamethylene 1,6-Bis (aminocarboxysulfonate), a bisulfite blocked diisocyanate obtained by the reaction of 1,6 Hexamethylene Diisocyanate and Sodium bisulfite, was used as cross linking agent. Two films formulations were tested: 30 and 50% cross-linked, and they were prepared by solvent evaporation technique. Chitosan cross-linked films were characterized for cross linkage by FTIR, for hydrophilicity by Contact Angle and for swelling behavior by Gravimetric method. Cross linking reaction was confirmed by FTIR. Moreover, cross linking increased the hydrophilic character of cross-linked films and suppressed swelling. However, 30% cross-linked film swollen less than the 50% one, while 50% cross-linked film swollen less than chitosan film itself. This behavior was attributed to the hydrophilic character of the cross linking agent and to the polymeric network formation by cross linking.  相似文献   

14.
Natural (outdoor) weathering test was performed to investigate the UV stability of thin films (0.06 mm) of linear low density polyethylene (LLDPE) and low density polyethylene (LDPE). The PE films were prepared from various formulations of LLDPE and LDPE resins. Some of these films contained a single high molecular mass HALS only, along with a primary antioxidant (i.e. Irganox 1010) and a secondary antioxidant (i.e. Irgafos 168 or Alkanox TNPP), while others contained HALS and UVA (i.e. Chimassorb 81 or Tinuvin P or Tinuvin 326) along with these antioxidants. The HALS used was either an oligomeric or a synergistic mixture of a high molecular mass (HMM) hindered amine stabilizer and co-additives. The UV stability was investigated by exposing the prepared films at 45° towards south in the direct sunshine up to 365 days. Fifty percent of tensile strength retention was determined for all these exposed films and it was found that the films containing a single HALS gained improved UV stability by about two to 12 fold over the pure films. On the other hand, films that contained a combination of HALS and UVA obtained further improved UV stability over the films containing a single HALS (both have antioxidants). Films containing a single HALS reached 50% TS retention within 205 days, whereas, films containing a combination of HALS and UVA reached 50% TS retention within 590 days, which is about three times further improvement in UV stability.  相似文献   

15.
Biodegradable multiblock copolymers were synthesized by a polycondensation of poly(ɛ-caprolactone) (PCL) diols of molecular weight (MW)=3,000 and poly(ethylene glycol)s (PEG) of MW=3,000 with 4,4′-(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender in diphenyl ether at 180 °C for 2 h, and were characterized by GPC, 1H-NMR, FTIR, UV, DSC, and WAXS. These photosensitive copolymers were irradiated by a 400-W high-pressure mercury lamp (λ>280 nm) from 5–60 min to form a network structure. The gel contents increased with irradiation time, and attained ca. 90% after 60 min for all copolymers. The degree of swelling in a distilled water at ambient temperature, and the rate of degradation in a phosphate buffer solution (pH 7.2) at 37 °C increased with increasing PEG components. The shape-memory tests were performed by a cyclic thermomechanical experiments for the photocured CAC/PCL/PEG (75/25) films. The film with a gel content of 57% showed the best shape-memory property with strain fixity rate of 100% and strain recovery rate of 88%.  相似文献   

16.
ZnO thin films were successfully deposited on SiO2/Si substrate using the sol–gel technique and annealed in various annealing atmospheres at 900 °C by rapid thermal annealing (RTA). X-ray diffraction revealed the (002) texture of ZnO thin films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the grains of the ZnO thin film were enlarged and its surface was smoothed upon annealing in oxygen. PL measurement revealed two ultraviolet (UV) luminescence bands at 375 and 380 nm. The intensity of the emission peak at 380 nm became stronger as the concentration of oxygen in the annealing atmosphere increased. The X-ray photoelectron spectrum (XPS) demonstrated that a more stoichiometric ZnO thin film was obtained upon annealing in oxygen and more excitons were generated from the radiative recombination carriers consistently. Additionally, the UV intensity increased with the thickness of ZnO thin film.  相似文献   

17.
Chitosan-based films were developed using different biosourced dicarboxylic acid solutions (succinic acid, adipic acid, suberic acid and sebacic acid). The effect of incorporating these nontoxic solutions on water vapor barrier, tensile and antimicrobial properties of chitosan films was evaluated. Fourier Transform Infrared (FTIR) and cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analyses were also performed to investigate functional groups interactions between chitosan and dicarboxylic acids. Acetic acid-chitosan films showed significantly higher water vapor permeability (WVP) and lower tensile strength (TS) and elongation at break (%E) than dicarboxylic acid-prepared films (p < 0.05). Using either adipic acid or suberic acid solutions to fabricate chitosan films reduced WVP by 85% and enhanced TS by 21 to 27% and %E by more than 60% when compared with the acetic acid-prepared films. Chitosan films modified with either adipic acid or suberic acid exhibited antimicrobial activity against all tested microorganisms.  相似文献   

18.
Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.  相似文献   

19.
通过自由基聚合反应得到了2,5-二[5-(对癸氧基)苯基)-1,3,4-噁二唑]乙烯基苯和乙烯基咔唑的无规共聚物.研究了共聚物组成与热性能关系;实验结果表明,随着乙烯基咔唑量的增加,共聚物的荧光量子产率会下降;共聚物与相应的均聚物相似,它们具有相似的光致发光波长.  相似文献   

20.
One‐layer and two‐layer nano‐TiO2 thin films were prepared on the surface of common glass by sol–gel processing. Water contact angle, surface morphology, tribological properties of the films before and after ultraviolet (UV) irradiation were investigated using DSA100 drop shape analyzer, scanning probe microscopy (SPM), SEM and universal micro‐materials tester (second generation) (UMT‐2MT) friction and wear tester, respectively. The stored films markedly resumed their hydrophilicity after UV irradiation. But UV irradiation worsened tribological properties of the films. After the film was irradiated by UV, the friction coefficient between the film and GCr15 steel ball increased about 10–50% and its wear life shortened about 20–90%. Abrasive wear, brittle break and adherence wear are the failure mechanisms of nano‐TiO2 thin films. It was believed that UV irradiation increased surface energy of the film and then aggravated adherence wear of the film at initial stage of friction process leading to severe brittle fracture and abrasive wear. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号