首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new series of donor–acceptor co‐polymers based on benzodithiophene and quinoxaline with various side chains have been developed for polymer solar cells. The effect of the degree of branching and dimensionality of the side chains were systematically investigated on the thermal stability, optical absorption, energy levels, molecular packing, and photovoltaic performance of the resulting co‐polymers. The results indicated that the linear and 2D conjugated side chains improved the thermal stabilities and optical absorptions. The introduction of alkylthienyl side chains could efficiently lower the energy levels compared with the alkoxyl‐substituted analogues, and the branched alkoxyl side chains could deepen the HOMO levels relative to the linear alkoxyl chains. The branched alkoxyl groups induced better lamellar‐like ordering, but poorer face‐to‐face packing behavior. The 2D conjugated side chains had a negative influence on the crystalline properties of the co‐polymers. The performance of the devices indicated that the branched alkoxyl side chains improved the Voc, but decreased the Jsc and fill factor (FF). However, the 2D conjugated side chains would increase the Voc, Jsc, and FF simultaneously. For the first time, our work provides insight into molecular design strategies through side‐chain engineering to achieve efficient polymer solar cells by considering both the degree of branching and dimensionality.  相似文献   

2.
New isoindigo and di(thienyl)ethylene‐containing π‐extended conjugated polymers with different branched side chains were synthesized to investigate their physical properties and device performance in thin‐film transistors and photovoltaic cells. 11‐Butyltricosane (S3) and 11‐heptyltricosane (S6) groups were used as side‐chain moieties tethered to isoindigo units. The linking groups between the polymer backbone and bifurcation point in the branched side chain differ in the two polymers (i.e., PIDTE‐S3 and PIDTE‐S6 ). The polymers bearing S6 side chains showed much better charge transport behavior than those with S3 side chains. Thermally annealed PIDTE‐S6 film exhibited an outstanding hole mobility of 4.07 cm2 V?1 s?1 under ambient conditions. Furthermore, bulk heterojunction organic photovoltaic cells made from a blend film of PIDTE‐S3 and (6,6)‐phenyl C61‐butyric acid methyl ester demonstrated promising device performance with a power conversion efficiency in the range of 4.9–5.0%. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1226–1234  相似文献   

3.
We describe herein the synthesis of novel donor–acceptor conjugated polymers with dithienobenzodithiophenes (DTBDT) as the electron donor and 2,1,3‐benzothiadiazole as the electron acceptor for high‐performance organic photovoltaics (OPVs). We studied the effects of strategically inserting thiophene into the DTBDT as a substituent on the skeletal structure on the opto‐electronic performances of fabricated devices. From UV/Vis absorption, electrochemical, and field‐effect transistor analyses, we found that the thiophene‐containing DTBDT derivative can substantially increase the orbital overlap area between adjacent conjugated chains and thus dramatically enhance charge‐carrier mobility up to 0.55 cm2 V?1 s?1. The outstanding charge‐transport characteristics of this polymer allowed the realization of high‐performance organic solar cells with a power conversion efficiency (PCE) of 5.1 %. Detailed studies on the morphological factors that enable the maximum PCE of the polymer solar cells are discussed along with a hole/electron mobility analysis based on the space‐charge‐limited current model.  相似文献   

4.
This paper reports the synthesis and characteristics of a series of alkyl-substituted planar polymers. The physical properties are carefully tuned to optimize their photovoltaic performance. Depending on the length of soluble alkyl side chains which modify the structural order and orientation substantially in polymer backbones, the device performance can be improved significantly. The tuning of HOMO energy levels optimized polymers’ spectral coverage of absorption and their hole mobility, as well as miscibility with fullerene; all these efforts enhanced polymer solar cell performances. The shortcircuit current, Jsc for polymer solar cells was increased by adjusting polymer chain packing ability. It was found that films with well distributed polymer/fullerene interpenetrating network exhibit improved solar cell conversion efficiency. Enhanced efficiency up to 5.8% has been demonstrated. The results provide important insights about the roles of flexile chains in structure-property relationship for the design of new polymers to be used in high efficient solar cells.  相似文献   

5.
A strategy of the fine‐tuning of the degree of intrachain charge transfer and aromaticity of polymer backbone was adopted to design and synthesize new polymers applicable in photovoltaics. Three conjugated polymers P1 , P2 , and P3 were synthesized by alternating the electron‐donating dithieno[3,2‐b:2′3′‐d]pyrrole (D) and three different electron‐accepting (A) segments ( P1 : N‐(2‐ethylhexyl)phthalimide; P2 : 1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole; and P3 : thiophene‐3‐hexyl formate) in the polymer main chain. Among the three polymers, P2 possessed the broadest absorption band ranging from 300 to 760 nm, the lowest bandgap (1.63 eV), and enough low HOMO energy level (?5.27 eV) because of the strong intrachain charge transfer from D to A units and the appropriate extent of quinoid state in the main chain of P2 , which was convinced by the theoretical simulation of molecular geometry and front orbits. Photovoltaic study of solar cells based on the blends of P1 – P3 and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) demonstrated that P2 :PCBM exhibited the best performance: a power conversion efficiency of 1.22% with a high open‐circuit voltage (VOC) of 0.70 V and a large short‐circuit current (ISC) of 5.02 mA/cm2 were achieved. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Summary: The electrochemical behaviour of four types of (phenylene ethynylene)‐alt‐(phenylene vinylene) hybrid polymers, 1 , 2 , 3 , and 4 have been investigated with respect to the influence of the grafted alkoxy side chains. In the case of the fully substituted polymers 2 , 3 , and 4 , the strong insulating nature of longer linear octadecyl or bulky branched 2‐ethylhexyl side chains lowers the HOMO levels of the polymers thereby increasing the discrepancy, ΔEg, between the electrochemical, Eequation/tex2gif-stack-1.gif, and the optical, Eequation/tex2gif-stack-2.gif, bandgap energies. Thus it is not possible to establish a direct correlation between the open circuit voltage, VOC, of bulk heterojunction solar cell devices of the configuration glass substrate/ITO/PEDOT:PSS/polymer 3 :PCBM(1:3, w/w)/LiF/Al and the HOMO energy levels of polymer 3 solely, as postulated in the literature. The photovoltaic (PV) parameters greatly depend on the grafted side chains.

Linear IV curves of solar cell devices from polymers 3a – d , measured in the dark and under 100 mW · cm−2 solar simulator illumination.  相似文献   


7.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

8.
In this work, a series of sole benzodithiophene-based wide band gap polymer donors, namely PBDTT, PBDTS, PBDTF and PBDTCl, were developed for efficient polymer solar cells (PSCs) by varying the heteroatoms into the conjugated side chains. The effects of sulfuration, fluorination and chlorination were also investigated systematically on the overall properties of these BDT-based polymers. The HOMO levels could be lowered gradually by introducing sulfur, fluorine and chlorine atoms into the side chains, which contributed to the stepwise increased Voc (from 0.78 V to 0.84 V) in the related PSCs using Y6 as the electron acceptor. This side-chain engineering strategy could promote the polymer chain interactions and fine-tune the phase separation of active blends, leading to enhanced absorption, ordered molecular packing and crystallinity. Among them, the chlorinated PBDTCl exhibited not only high level absorption and crystallinity, but also the most balanced hole/electron charge transport and the most optimized morphology, giving rise to the best PCE of 13.46 % with a Voc of 0.84 V, a Jsc of 23.16 mA cm−2 and an FF of 69.2 %. The chlorination strategy afforded PBDTCl synthetic simplicity but high efficiency, showing its promising photovoltaic applications for realizing low-cost practical PSCs in near future.  相似文献   

9.
We report the synthesis of low bandgap polymers with a difluoroquinoxaline unit by Stille polymerization for use in polymer solar cells (PSCs). A new series of copolymers with 2,3‐didodecyl‐6,7‐difluoro quinoxaline as the electron‐deficient unit and alkyloxybenzo[1,2‐b:4,5‐b′]dithiophene and thiophene as the electron‐rich unit were synthesized. The photovoltaic properties of the devices based on the synthesized polymers revealed that the fluorine atoms at the quinoxaline units aid in decreasing the highest occupied molecular orbital (HOMO) energy levels; this in turn increased the open circuit voltage of the devices. The polymers with long alkyl chains exhibited good solubility that increased their molecular weight, but the power conversion efficiency was low. Efficient polymer solar cells were fabricated by blending the synthesized copolymers with PC71BM, and the PCE increased up to 5.11% under 100 mW cm−2 AM 1.5 illumination. These results demonstrate that the importance of having a control polymer to be synthesized and characterized side by side with the fluorine analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1489–1497  相似文献   

10.
A poly[benzodithiophene‐alt‐di‐2‐thienyl‐quinoxaline] series (PBDTDPQ‐EH, PBDTDPQ‐OD, and PBDTDPQ‐HDT) was synthesized via Stille coupling. Deep highest occupied molecular orbital (HOMO) levels were achieved by the introduction of 2‐decyl‐4‐hexyl‐thiophen‐yl (HDT) side chains. The introduction of the various side chains increased the molecular weight of the polymers, and the polymers dissolved well in common organic solvents at room temperature. The HOMO energy level (?5.20 to ?5.49 eV) decreased because of the 2D conjugated structure. X‐ray diffraction analysis showed that PBDTDPQ‐OD had a slightly edge‐on structure. In the case of PBDTDPQ‐HDT, however, the structure was amorphous due to the thiophene side chain, and the extent of π stacking increased. After fabricating bulk‐heterojunction‐type polymer solar cells, the OPV characteristics were evaluated. The values of open‐circuit voltage (Voc), short‐circuit current (Jsc), fill factor, and power conversion efficiency (PCE) were 0.88 V, 7.9 mA cm?2, 45.4%, and 3.2%, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1028–1036  相似文献   

11.
Donor–acceptor (D–A) conjugated polymers bearing non‐covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4‐dithienyl‐2,5‐dialkoxybenzene ( TBT ) is a typical moiety possessing intramolecular S…O interactions and thus a restricted planar configuration, it was used in this work as an electron‐donating unit to combine with the following electron‐accepting units: 3‐fluorothieno[3,4‐b]thiophene ( TFT ), thieno‐[3,4‐c]pyrrole‐4,6‐dione ( TPD ), and diketopyrrolopyrrole ( DPP ) for the construction of such D–A conjugated polymers. Therefore, the so‐designed three polymers, PTBTTFT , PTBTTPD , and PTBTDPP , were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE = 1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest‐lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM‐blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 689–698  相似文献   

12.
In this article, pendent thiophene (2‐butyl‐5‐octylthiophene) side chain is used to modify the backbone of the polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD). Compared with the dodecyloxy side‐chained polymer (P1), pendent thiophene‐based polymers (P2 and P3) show similar number‐average molecular weight (Mn), polydispersity index, thermal stability (Td ~ 334–337 °C), and optical band gaps ( ) (~1.8 eV). Polymer (P2)‐based BDT with pendent thiophene and ethylhexyl‐modified TPD shows relatively low‐lying HOMO energy level (?5.52 eV) and nearly 1 V high open circuit voltage (VOC). The polymer solar cell devices based on three copolymers show power conversion efficiencies from 2.01% to 4.13%. The hole mobility of these polymers tested by space charge limited current method range from 3.4 × 10?4 to 9.2 × 10?4 cm2V?1s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1558–1566  相似文献   

13.
Four novel two‐dimensional (2D) donor–acceptor (D‐A) type copolymers with different conjugated side chains, P1 , P2 , P3 , and P4 (see Fig. 1 ), are designed and synthesized for the application as donor materials in polymer solar cells (PSCs). To the best of our knowledge, there were few reports to systematically study such 2D polymers with D‐A type main chains in this area. The optical energy band gaps are about 2.0 eV for P1 – P3 and 1.67 eV for P4 . PSC devices using P1 – P4 as donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor in a weight ratio of 1:3 were fabricated and characterized to investigate the photovoltaic properties of the polymers. Under AM 1.5 G, 100 mA/cm2 illumination, a high open‐circuit voltage (Voc) of 0.9 V was recorded for P3 ‐based device due to its low HOMO level, and moderate fill factor was obtained with the best value of 58.6% for P4 ‐based device, which may mainly be the result of the high hole mobility of the polymers (up to 1.82 × 10?3 cm2/V s). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Two novel polymeric acceptors based on naphthalene diimide (NDI) and 2.2′‐bithiophene, named as P(NDI2THD‐T2) and P(NDI2TOD‐T2), were designed and synthesized for all polymer solar cells application. The structural and electronic properties of the two acceptors were modulated through side‐chain engineering of the NDI units. The optoelectronic properties of the polymers and the morphologies of the blend films composed of the polymer acceptors and a donor polymer PTB7‐Th were systemically investigated. With thiophene groups introduced into the side chains of the NDI units, both polymers showed wider absorption from 350 nm to 900 nm, compared with the reference polymer acceptor of N2200. No redshift of absorption spectra from solutions to films indicated reduced aggregation of the polymers due to the steric hindrance effect of thiophene rings in the side chains. The photovoltaic performance were characterized for devices in a configuration of ITO/PEDOT:PSS/PTB7‐Th:acceptors/2,9‐bis(3‐(dimethylamino)propyl)anthra[2,1,9‐def:6,5,10‐def]diisoquinoline‐1,3,8,10(2H,9H)‐tetraone (PDIN)/Al. With the addition of diphenyl ether as an additive, the power conversion efficiencies (PCEs) of 2.73% and 4.75% for P(NDI2THD‐T2) and P(NDI2TOD‐T2) based devices were achieved, respectively. The latter showed improved Jsc, Fill Factor (FF), and PCE compared with N2200 based devices. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3679–3689  相似文献   

15.
Four ethynylene‐containing donor‐acceptor alternating conjugated polymers P1 – P4 with 2,5‐bis(dodecyloxy) substituted phenylene or carbazole as the donor unit and benzothiadiazole (BTZ) as the acceptor unit were synthesized and used as donor polymers in bulk heterojunction polymer solar cells. The optical, electrochemical, and photovoltaic properties of these four polymers with the ethylene unit located at different positions of the polymer chains were systematically investigated. Our results demonstrated that absorption spectra and the HOMO and LUMO energy levels of polymers could be tuned by varying the position of the ethynylene unit in the polymer chains. Photovoltaic devices based on polymer/PC71BM blend films spin coated from chloroform and dichlorobenzene solutions were investigated. For all four polymers, open circuit voltages (Voc) higher than 0.8 V were obtained. P4 , with ethynylene unit between BTZ and thiophene, shows the best performance among these four polymers, with a Voc of 0.94 V, a Jsc of 4.2 mA/cm2, an FF of 0.40, and a PCE of 1.6%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
The systematic optimization of the chemical structure of low‐bandgap (LBG) donor‐acceptor polymeric semiconductors is a challenging task for which accurate guidelines are yet to be determined. Several different structural and molecular parameters are crucial ingredients for obtaining LBG polymers that simultaneously possess high power conversion efficiencies, good processability in common organic solvents, and enhanced stability in organic photovoltaic devices. In this work, we present an extensive structure–optoelectronic properties–solar cell performance study on the emerging class of diketopyrrolopyrrole‐based LBG polymers. In particular, we investigate alkyl side chain positioning by introducing linear alkyl side chains into two different positions (α‐ and β‐), and the distance of the electron rich and electron deficient monomers within the repeat units of the polymer chain. We demonstrate that anchoring linear alkyl side chains to the α‐positions and introducing fused moieties into the polymer backbone, can be beneficial toward maintaining photocurrents similar to the unsubstituted derivative, and concurrently exhibit better processabiliy in common organic solvents. These results can provide a design rationale towards further optimization of semiconducting polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 138–146  相似文献   

17.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

18.
Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field‐effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field‐effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2691–2699  相似文献   

19.
Four new D—A type copolymers with 2D‐conjugated side‐chain identified PfToBT, PbToBT, PfTDPP and PbTDPP, containing two acceptors 4,7‐dithien‐2‐yl‐benzo[c][1,2,5]thiadiazole (DTBT), and diketopyrrolopyrrole (DPP) linked by thiophene donors, are obtained using Pd‐catalyzed Stille‐coupling reaction. These polymers show a broad visible‐near‐infrared absorption band (Eg = 1.79–1.66 eV) and possess a relatively low‐lying HOMO level at ?5.34 to ?5.12 eV. All the polymer:PC70BM blend films showed edge‐on structure and have similar dπ‐spacing values. According to the structure of conjugated side‐chain, the vertical distributions of polymer chains and PC70BM within the BHJ (bulk heterojunction) were different. When DPP used as an acceptor, conjugated side chains of the polymer coexisted with PC70BM in same position. The BHJ film prepared from PfToBT, PbToBT had a discontinuous network between polymer and PC70BM, whereas films from PfTDPP and PbTDPP formed continuous and evenly distributed network between them. This optimized vertical morphology promotes hole transport along respective pathways of polymers and fullerenes in the vertical direction, leading to high JSC. PbTDPP shows PCE up to 2.9% (Jsc of 9.4 mA/cm2, Voc of 0.68 V, and FF of 0.44). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2746–2759  相似文献   

20.
Through the Stille coupling polymerization, a series of soluble acceptor/donor quinoxaline/thiophene alternating conducting polymers with a hole‐transporting moiety of carbazole as a side chain ( PCPQT ) has been designed, synthesized, and investigated. The UV–vis measurement of the charge‐transferred type PCPQT s of different molecular weights with low polydispersity exhibits a red shifting of their absorption maximum from 530 to 630 nm with increasing chain length (Mn: from 1100 to 19,200). The HOMO and LUMO energy levels of PCPQT can be determined from the cyclic voltammetry measurement to be ?5.36 and ?3.59 eV, respectively. Solar cells made from PCPQT/PCBM bulk heterojunction show a high open‐circuit voltage, Voc of ~0.75 V, which is significantly higher than that of a solar cell made from conventional poly(3‐hexyl thiophene)/ PCBM as the active polymer PCPQT has lower HOMO level. Further improvements are anticipated through a rational design of the new low band‐gap and the structurally two‐dimensional donor–acceptor conducting polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1607–1616, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号