首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attapulgite/polystyrene (ATP/PS) nanocomposites with different contents of attapulgite nano‐needles organo‐modified, and cetyltrimethylammonium bromide (CTAB) were successfully prepared by the in situ bulk radical polymerization of styrene, under microwave irradiation. The transmission electron microscopy (TEM) results showed good dispersibility of the organo‐modified attapulgite nano‐needles in the polystyrene matrices. The thermogravimetric analysis (TGA) revealed that the thermal stability of the nanocomposite was enhanced with the increase of additional attapulgite nano‐needles.  相似文献   

2.
Polystyrene based nanocomposites (PNCs) with and without flame retardant additives were successfully prepared through a single-screw extrusion technique. The combination effect of nanoparticles and flame retardants was investigated with nanosilica and attapulgite clay as nanofillers, and with a NASA formulated SINK flame retardant. A comprehensive study was done by Cone Calorimetry, UL94 and TGA.The addition of nanoparticles to polystyrene generally improved the OI of polystyrene. The horizontal burning tests suggested that nanofiller types have different impacts on the flammability of nanocomposites. According to the vertical burning tests and oxygen indices, it was found that polystyrene/silica and polystyrene/attapulgite clay PNCs alone are not flame retardant. In fact, the materials burned faster. However, the combination of nanocomposites with the SINK flame retardant significantly altered the thermal stability, and flammability of the materials. A remarkable reduction in heat release rates of polystyrene was achieved for both silica and attapulgite with flame retardant nanocomposites. For instance, the introduction of 20% SINK into PS reduced the PHRR of PS from 1212 to 838 (−31%); 10% silica reduced it from 1212 to 1060 (−13%), while the combination of silica and SINK reduced it to 530 (−56%), which clearly shows interaction between nanosilica and SINK.  相似文献   

3.
The surface grafting of attapulgite (ATP) with polystyrene (PS) was established via a simultaneous reverse and normal initiation atom transfer radical polymerization (SR&NIATRP). 4‐(chloromethyl)phenyltrimethoxysilane (CMPTMS) chemical bounded on the surface of ATP (ATP‐Cl, Cl‐I) was prepared via one‐step self‐assembly. SR&NI ATRP of styrene was conducted using CuCl2 complex tris(2‐(dimethylamino)ethyl)amine (Me6‐TREN) as the catalytic system, initiated by 2,2‐azobis(isobutyronitrile) (AIBN) and ATP‐Cl. FT‐IR, XRD, XPS, TGA and TEM data were consistent with the grafting of benzyl chloride groups and PS chains on ATP surface. The controllability of polymerization was investigated by the kinetics behavior under different molar ratio of AIBN and CuCl2. The obtained polymer possessed a uniform distribution of molecular weights with a lower polydispersity index of 1.2~1.4. The relationship between polymerization on the surface of ATP and in solution was discussed in detail based on TGA data of hybrid particles and GPC trace of free polymer in solution. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1508–1516  相似文献   

4.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

5.
The attapulgite/iron oxide magnetic nanocomposites were prepared by coprecipitation method and characterized by scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer and Fourier transform infrared sorption spectroscopy. The results of characterization showed that iron oxides were successfully deposited on the surfaces of attapulgite. The prepared magnetic nanocomposites were applied to remove radionuclide U(VI) ions from aqueous solutions by using batch technique and magnetic separation method. The results showed that the sorption of U(VI) on attapulgite/iron oxide magnetic composites was strongly dependent on ionic strength and pH at low pH values, and was independent of ionic strength at high pH values. The interaction of U(VI) with the magnetic nanocomposites was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, and was controlled by inner-sphere surface complexation or multinuclear surface complexation at high pH values. With increasing temperature, the sorption of U(VI) on attapulgite/iron oxide magnetic composites increased and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on the magnetic nanocomposites was a spontaneous and endothermic process. The high sorption capacity and easy magnetic separation of the attapulgite/iron oxide magnetic composites make the material as suitable sorbent in nuclear waste management.  相似文献   

6.
To investigate the dispersion and nanofillers' interaction of rod‐like silicates (attapulgite, ATT) in the polymethylmethacrylate (PMMA) matrix, a novel in situ modification of ATT by toluene‐2,4‐di‐isocyanate (TDI) using mechanical mixing was exploited, which resulted in homogeneous dispersion and rod‐like texture of ATT nanorods. As a consequence, organo‐modified ATT/PMMA nanocomposites were prepared, which provided prominent improvements in strength, toughness, and thermal stability. High grafting efficiency of TDI on ATT surface was confirmed by FTIR spectra and SEM observations. The uniform dispersion of in situ TDI modified ATT nanorods in the PMMA which was clearly visible in the TEM micrographs, influenced the mechanical and thermal properties of the nanocomposites. The fibrous nanoparticles significantly confined the segmental motion, causing a 13.20°C increase in the glass transition temperature of 2 wt% in situ TDI modified ATT/PMMA nanocomposites. But at higher loadings little or no differences were observed for the reinforcement benefits provided by the in situ TDI modified ATT clay. By comparison, pre‐treated ATT clay severely fractured during mechanical mixing and showed little reinforcement benefits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

8.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
In this study, high performance shape memory polyurethane (SMPU)/silica nanocomposites with different silica weight fraction including SMPU bulk, 3%, 4.5%, 6%, 7.5%, 10%, were prepared by sol‐gel process initiated by the solid acid catalyst of p‐toluenesulfonic acid (PTSA). Field emission scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) observation show that the silica nanoparticles are dispersed evenly in SMPU/silica nanocomposites. Tensile test and dynamic mechanical analysis (DMA) suggest that the mechanical properties and the glass transition temperature (Tg) of the nanocomposites were significantly influenced by silica weight fraction. Thermogravimetric analysis (TGA) was utilized to evaluate the thermal stability and determine the actual silica weight fraction. The TGA results indicate that the thermal stability can be enhanced with the hybridization of silica nanoparticles. Differential scanning calorimetry (DSC) was conducted to test the melting enthalpy (ΔH) and the results suggest that the ΔH was markedly improved for the SMPU/silica nanocomposites. Thermomechanical test was conducted to investigate the shape memory behavior and the results show that the shape fixity is improved by hybridization of silica and good shape recovery can be obtained with the increasing of cycle number for all the samples.  相似文献   

10.
Nanocomposites based on poly(methyl methacrylate) (PMMA) and TiO2 nanoparticles were synthesized by in situ radical polymerization of MMA in solution. The surface of TiO2 nanoparticles was modified with four gallic acid esters (octyl, decyl, lauryl and cetyl gallate). The content of gallates present on the surface of TiO2 was calculated from the TGA results. The influence of length of hydrophobic tail of amphiphilic alkyl gallates on dispersability of surface modified TiO2 nanoparticles in PMMA matrix, the molecular weight and glass transition temperature of PMMA, as well as the thermal stability of the prepared PMMA/TiO2 nanocomposites in nitrogen and air was investigated. The influence of content of TiO2 nanoparticles on the properties of these nanocomposites was also examined. The formation of a charge transfer complex between the surface Ti atoms and the gallates was confirmed by FTIR and UV spectroscopy. TEM micrographs of the PMMA/TiO2 nanocomposites revealed that degree of TiO2 aggregation can be significantly lowered by increasing the length of aliphatic part of the used gallates. The molecular weight of PMMA slightly decreases with the increase of TiO2 content, indicating that used TiO2 nanoparticles act as radical scavengers during the polymerization of MMA. The presence of surface modified TiO2 nanoparticles do not have an influence on the mobility of PMMA chain segments leading to the same values of glass transition temperature for all investigated samples. Thermal and thermo-oxidative stability of the PMMA matrix are improved by introducing TiO2 nanoparticles modified with gallates.  相似文献   

11.
首先用偶联剂苯胺基甲基三乙氧基硅烷(AMTES)对纳米TiO2进行表面修饰(AMTES-TiO2), 然后通过苯胺单体在AMTES-TiO2表面的原位化学氧化接枝聚合, 制备了基于共价键结合的聚苯胺(PANI)/AMTES-TiO2纳米复合光催化材料. 用红外光谱(FTIR), X射线衍射(XRD), 热重分析(TGA), 紫外-可见漫反射光谱(UV-Vis-DRS)和荧光发射光谱(PL)等技术对复合材料进行了表征. 以亚甲基蓝(MB)为目标降解物, 研究了PANI/AMTES-TiO2复合材料在太阳光和紫外光下的光催化性能. 结果表明:聚苯胺敏化拓宽了TiO2的光谱响应范围, 复合材料在紫外和可见光区都有较强的吸收, 提高了光能的利用率和光生载流子的分离效率, 使复合材料表现出较高的光催化活性; 苯胺与AMTES-TiO2的质量比(w)对复合材料的光催化活性有较大影响, 当w为0.025时, 复合材料在两种光源下的催化性能均优于TiO2和AMTES-TiO2.  相似文献   

12.
以丙交酯开环聚合原位接枝改性的纳米生物玻璃(PLLA-g-BG)与聚丙交酯-乙交酯(PLGA)复合材料为研究对象, 采用TGA, ESEM和EDX分析其接枝率, 粒子分散性和表面元素分布, 通过将兔成骨细胞种植于材料膜表面进行体外培养, 采用荧光染色法、NIH Image J图像分析软件、MTT法和流式细胞术等手段检测细胞在材料表面的平均黏附数量、扩展面积比、增殖能力和细胞周期的变化, 综合评价新型改性纳米复合材料的生物相容性和生物活性. 结果表明, 聚乳酸表面接枝改性可明显改善纳米生物玻璃粒子的团聚; PLGA中掺入一定比例的改性PLLA-g-BG可明显促进兔成骨细胞的黏附、扩展与增殖; 改性纳米生物玻璃的应用可提高生物可降解聚酯材料的生物相容性和生物活性.  相似文献   

13.
The effect of untreated and tri-n-octylphosphine oxide (TOPO) surface-treated TiO2 nanoparticles when included as filler in poly(ethylene terephthalate) on its compatibility, non-isothermal crystallization behavior, viscoelastic transitions and cold crystallization has been studied. The effectiveness of the surface treatment has been studied using infrared spectrophotometry (FTIR) and thermogravimetric analysis (TGA). The effect of the untreated and surface-treated nanofiller content in the polymer, added by an extrusion process, on the non-isothermal crystallization has been studied by differential scanning calorimetry (DSC). The influence on the viscoelastic transitions and cold crystallization of PET nanocomposites has been studied through thermomechanical analysis (TMA). The surface treatment and the concentration of nanofiller influence the non-isothermal crystallization behavior, the viscoelastic transitions and the cold crystallization of the PET nanocomposites, enables us to evaluate the compatibility and the level of dispersion/aggregation of the nanofiller in the poly(ethylene terephthalate).  相似文献   

14.
Polypyrrole/iron oxide (PPy/γ-Fe2O3) nanocomposites were synthesized by in situ oxidative polymerization of pyrrole in the presence of surface modified γ-Fe2O3 in supercritical carbon dioxide (scCO2). The structural properties of nanocomposite particles thus obtained were characterized by FT-IR, thermal analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that ca. 50 nm γ-Fe2O3 nanoparticles were well dispersed in PPy powder in TEM pictures. X-ray photoelectron spectroscopy (XPS) analysis also support that all γ-Fe2O3 nanoparticles are encapsulated by PPy. Magnetic property of the nanocomposites was measured by SQUID, which indicated that the nanocomposites are superparamagnetic. The effects of different loadings of γ-Fe2O3 on the polymerization were also investigated.  相似文献   

15.
In the present study poly(propylene sebacate) (PPSeb) nanocomposites containing 2 wt% of fumed silica nanoparticles (SiO2) or multiwalled carbon nanotubes (MWCNTs), or montmorillonite (MMT) were prepared by in situ polymerization. The thermal degradation of nanocomposites was studied using thermogravimetric analysis (TGA). It was found that the addition of MWCNTs and MMT enhances the thermal stability of the polymer, while SiO2 nanoparticles do not affect it. From the variation of the activation energy (E) with increasing degree of conversion it was found that the decomposition of nanocomposites proceeded with a complex reaction mechanism with the participation of at least two different steps. To evaluate the thermal decomposition mechanisms and mainly the effect of nanoparticles on the thermal decomposition of PPSeb, TGA/FTIR and a combination of TG-gas chromatography–mass spectrometry (TG/GC–MS) were used. From mass ions detection of the formed decomposition compounds it was found that the decomposition of PPSeb and its nanocomposites, takes place mainly through β-hydrogen bond scission and, secondarily, through α-hydrogen bond scission. The main decomposition products were aldehydes, alcohols, allyl, diallyl, and carboxylic acids.  相似文献   

16.
石墨氮化碳(g-C3N4)是一种窄带隙的n型半导体材料,具有可见光降解有机污染物能力;凹凸棒土(ATP)具有很强的表面活性和吸附能力,可作为催化剂的载体。我们以g-C3N4和ATP杂化材料(ATP/g-C3N4)为基础,通过简单的化学还原法将纳米Pt颗粒沉积到ATP/g-C3N4表面,随后利用纳米金属Pt颗粒催化苯胺无电聚合,促使聚苯胺(PANI)在ATP/g-C3N4表面或孔道中原位生成,获得ATP/g-C3N4-Pt/PANI复合材料。以阴离子染料甲基橙(MO)为模型体系,考察了复合材料的可见光催化性能。研究表明,共轭结构的PANI和g-C3N4在复合材料中保持完好,说明其具有良好的兼容性。由于多组分材料之间的协同效应,使得ATP/g-C3N4  相似文献   

17.
This work describes the preparation and characterization of polypyrrole (PPy)/iron oxide nanocomposites fabricated from monodispersed iron oxide nanoparticles in the crystalline form of magnetite (Fe3O4) and PPy by in situ chemical oxidative polymerization. Two spherical nanoparticles of magnetite, such as 4 and 8 nm, served as cores were first dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/magnetite spherical templates that avoid the aggregation of magnetite nanoparticles during the further preparation of nanocomposites. The PPy/magnetite nanocomposites were then synthesized on the surface of the spherical templates. Structural and morphological analysis showed that the fabricated PPy/magnetite nanocomposites are core (magnetite)‐shell (PPy) structures. Morphology of the PPy/magnetite nanocomposites containing monodispersed 4‐nm magnetite nanoparticles shows a remarkable change from spherical to tube‐like structures as the content of nanoparticles increases from 12 to 24 wt %. Conductivities of these PPy/magnetite nanocomposites show significant enhancements when compared with those of PPy without magnetite nanoparticles, in particular the conductivities of 36 wt % PPy/magnetite nanocomposites with 4‐nm magnetite nanoparticles are about six times in magnitude higher than those of PPy without magnetite nanocomposites. These results suggest that the tube‐like structures of 36 wt % PPy/magnetite nanocomposites may be served as conducting network to enhance the conductivity of nanocomposites. The magnetic properties of 24 and 36 wt % PPy/magnetitenanocomposites show ferromagnetic behavior and supermagnetism, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1291–1300, 2008  相似文献   

18.
Cerium dioxide/polyaniline core-shell nanocomposites   总被引:4,自引:0,他引:4  
The preparation of CeO2/polyaniline (CeO2/PANI) core-shell nanocomposites via chemical oxidation of aniline using CeO2 as an oxidant is reported. TEM, TGA, FT-IR, XPS, and conductivity measurement are used to characterize the resulting composites. TEM measurements reveal that the shape of PANI/CeO2 nanocomposites is different from CeO2 nanoparticles and fibular PANI oxidized with soluble oxidant. Electron diffraction (ED) patterns of CeO2/PANI nanocomposites reveal single crystal of CeO2. FT-IR spectra confirmed the formation of PANI; the amount of PANI in the nanocomposites is estimated by TGA results. The conductivities increase with the increasing ratio of PANI/CeO2. XPS results reveal that in the nanocomposites Ce4+ of CeO2 is reduced to Ce3+. In addition, the degree of protonation of polyaniline obtained from N 1s XPS results in cerium dioxide/polyaniline composites is about 48.52%.  相似文献   

19.
Nanocomposites based on attapulgite clay and shape-memory polyurethane were fabricated by mechanical mixing. The mechanical properties of samples were evaluated using a micro-indentation tester. The untreated commercial attapulgite clay resulted in a significant decrease in glass transition temperature and hardness of the nanocomposite due to the presence of moisture as well as the clay’s amorphous structure and surface hydroxyl groups. The attapulgite nanoparticles were heat-treated at 850 °C, which resulted in crystallization of the particles and formation of layered attapulgite structure. The hardness of the nanocomposites composed of the heat treated clay powder dramatically increased as a function of clay content, which is attributed to the homogeneous dispersion of the nanofillers in the polymer matrix and strong filler-polymer interactions. Shape recovery of indentations has been demonstrated upon heating.  相似文献   

20.
The main purpose of this study was to investigate the effect of zinc oxide (ZnO) nanoparticles on the morphological, mechanical, thermal, and rheological properties of PLA/PP blend. In this regard, nanocomposites containing 1, 3, and 5 wt% of ZnO nanoparticles were prepared by melt mixing. In addition, three different mixing procedures were adopted to study their effects on the microstructure of nanocomposites. The rheological behaviors demonstrated a higher elasticity and less compatibility for two phases in the case of nanocomposites containing nanoparticles in harmony with the morphological observations. Accordingly, it was correlated to the elasticity originating from the interphase, anticipated coalescence of dispersed particles as a result of degradation of PLA chains triggered by ZnO nanoparticles (ZnO‐NPs) and also agglomeration of ZnO‐NPs depending on the content of nanoparticles and chosen mixing procedure. It was also found that mixing method puts a remarkable influence on the microstructure and rheological behavior of nanocomposites. Results of mechanical characterizations and thermogravimetric analysis (TGA) also confirmed the degradation induced by ZnO nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号