首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Silver nanoparticles have been prepared in a polyacrylamide (PA) matrix, as well as in the presence of a hyperbranched polyamine/polyacrylamide combined system (HB‐PA) by using a reductive technique. The stability of colloidal solution of silver nanoparticles is higher (5 months) in combined matrix compared to PA alone (4 months). The prepared silver nanoparticles were characterized by different spectroscopic and analytical techniques such as FTIR, UV‐visible, X‐ray diffraction, TEM etc. TEM and XRD studies confirmed the formation of well‐dispersed nanoparticles with an average size of 9.91 nm and 8.5 nm for PA and HB‐PA matrices, respectively. The antibacterial activity of silver nanoparticles in both the matrices was tested against Bacillus Subtilis bacteria by using the diffusion disc technique. The result shows that the antibacterial activity of the active agent, Ag(0) is a little higher in the case of HB‐PA system. The dielectric constant of the matrices decreases with an increase in frequency, but the values increase with an increase of concentration of silver nanoparticles in PA matrix.  相似文献   

2.
The bio‐based shape memory polymers have generated immense interest as advanced smart materials. Mesua ferrea L. seed oil‐based hyperbranched polyurethane (HBPU)/Fe3O4 nanocomposites were prepared by the in‐situ polymerization technique. The transmission electron microscopy confirmed the homogeneous distribution of the Fe3O4 nanoparticles in polymer matrix, whereas Fourier transform infrared spectroscopic study revealed the presence of strong interfacial interactions between them. The incorporation of Fe3O4 (0 to 10 wt%) into the HBPU resulted in an increase in tensile strength (5.5–15 MPa) and scratch resistance (3–6 kg). The thermo‐gravimetric analysis indicated the improvement of thermal stability (240–270°C) of the nanocomposites. The nanocomposites exhibited full shape fixity, as well as almost full shape recovery under the microwave stimulus. The shape recovery speed increased with the increase of Fe3O4 nanoparticles content in the nanocomposites. Thus, the studied nanocomposites might be used as advanced shape memory materials in different potential fields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
New polymer nanocomposites containing iron oxide nanoparticles stabilized with a biocompatible copolymer of 1-vinyl-1,2,4-triazole with N-vinylpyrrolidone were produced. The synthesis was conducted using the method of chemical reduction of iron ions with hydrazine hydrate in an aqueous medium in the presence of a polymer matrix. The ESR spectroscopy data showed that the core—shell type nanoparticles were obtained. The core generally consistsed of zero-valence iron coated with an oxide shell. According to the data of transmission electron microscopy, the obtained polymer nanocomposites consisted of nanoparticles of mainly spherical shape with a diameter from 1 to 14 nm. Aggregates formed from individual stabilized nanoparticles of up to 75 nm in size (in most cases) were also observed. These aggregated particles were found to self-organize and form branched chains. Nanocomposites were characterized by a different particle-size distribution, which was determined by the initial ratio of the copolymer and the precursor of iron nanoparticles.  相似文献   

4.
This work describes the preparation and characterization of polypyrrole (PPy)/iron oxide nanocomposites fabricated from monodispersed iron oxide nanoparticles in the crystalline form of magnetite (Fe3O4) and PPy by in situ chemical oxidative polymerization. Two spherical nanoparticles of magnetite, such as 4 and 8 nm, served as cores were first dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/magnetite spherical templates that avoid the aggregation of magnetite nanoparticles during the further preparation of nanocomposites. The PPy/magnetite nanocomposites were then synthesized on the surface of the spherical templates. Structural and morphological analysis showed that the fabricated PPy/magnetite nanocomposites are core (magnetite)‐shell (PPy) structures. Morphology of the PPy/magnetite nanocomposites containing monodispersed 4‐nm magnetite nanoparticles shows a remarkable change from spherical to tube‐like structures as the content of nanoparticles increases from 12 to 24 wt %. Conductivities of these PPy/magnetite nanocomposites show significant enhancements when compared with those of PPy without magnetite nanoparticles, in particular the conductivities of 36 wt % PPy/magnetite nanocomposites with 4‐nm magnetite nanoparticles are about six times in magnitude higher than those of PPy without magnetite nanocomposites. These results suggest that the tube‐like structures of 36 wt % PPy/magnetite nanocomposites may be served as conducting network to enhance the conductivity of nanocomposites. The magnetic properties of 24 and 36 wt % PPy/magnetitenanocomposites show ferromagnetic behavior and supermagnetism, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1291–1300, 2008  相似文献   

5.
Water-dispersible selenium nanoparticles (SeNPs) were created by using natural hyperbranched polysaccharide (HBP) as the stabilizer and capping agent under extremely safe conditions. The structure, morphology, size, and stability of the nanocomposites were investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and static and dynamic light scattering (DLS) measurements. The results revealed that the spherical selenium nanoparticles (mean particle size of about 24 nm) were ligated with HBP to form nanocomposites (Se-HBP) in aqueous solution and were stable for over one month. In our findings, supported by the results of FTIR, TEM, AFM, and DLS, SeNPs were capped with the HBP macromolecules, as a result of strong physical adsorption of OH groups on Se surfaces, leading to a highly stable structure of Se nanoparticles in water. This work provided reaction sites for the complexation between HBP and Se to fabricate well-dispersed Se nanoparticles in aqueous system with potential bioapplications.  相似文献   

6.
《Comptes Rendus Chimie》2002,5(10):659-664
Various properties of spinel iron oxide nanoparticles are reviewed in relation to the control of the particle size and the control of their dispersion in a variety of matrices. The deep knowledge of the different synthesis parameters and the interfacial oxide–solution characteristics allow us to prepare a large variety of materials like calibrated nanoparticles and inorganic or hybrid nanocomposites.  相似文献   

7.
Hyper‐cross‐linked resins stemming from a gel‐type poly‐chloromethylated poly(styrene‐co‐divinylbenzene) resin (GT) have been investigated by a multi‐methodological approach based on elemental analysis, scanning electron microscopy, X‐ray microanalysis, and solvent absorption. The hyper‐cross‐linking of the parent resin was accomplished by Friedel–Crafts alkylation of the phenyl rings of the resins with the chloromethyl groups. This produced a permanent pore system comprising both micropores (<2.0 nm in diameter) and mesopores (2.2 nm). The chloromethyl groups that did not react in the hyper‐cross‐linking step were transformed into methylmercaptan groups and the latter were then converted into sulfonic groups by oxidation with hydrogen peroxide. By this procedure the extensive permanent porosity of the parent unsulfonated hyper‐cross‐linked polymer (HGT) was retained by the sulfonated polymer (HGTS). The final exchange capacity of HGTS was determined to be 0.36 mmol g?1. HGTS was easily metalated with PdII and the subsequent reduction of the metal centers with either aqueous sodium borohydride, formaldehyde, or dihydrogen produced three Pd0/HGTS nanocomposites. The metal nanoparticles had diameters in the 1–6 nm range for all the nanocomposites, as determined by TEM, but with somewhat different distributions. When formaldehyde was used, more than 90 % of the nanoparticles were less than 3 nm and their radial distribution throughout the polymer beads was quite homogeneous. These findings show that with this reducing agent the metal nanoparticles are generated within the pore system of the polymer matrix, hence their size is controlled by the dimensions of the pores of the polymeric support.  相似文献   

8.
The phase equilibrium in a system of linear polydimethylsiloxane–functionalized nanoparticles 1.2–2.2 nm in size with a core made of hyperbranched silica and a periphery of decyl groups has been studied by laser interferometry method. Phase diagrams of the studied systems fit the amorphous phase equilibrium with UCST increasing with the nanoparticle size. The mixtures present nanoparticle solutions in the linear polymer or emulsions of a saturated solution of one component in a saturated solution of other component depending on the components ratio. Dilute, concentrated, or highly concentrated dispersions show individual features of the rheological behavior. For each colloid chemical and phase states of mixtures, the viscosity and viscoelastic properties have been investigated in a wide temperature range. The obtained results have been compared with the previous data for mixtures of decylated nanoparticles and polyisobutylene.  相似文献   

9.
We aimed at preparing magnetic iron oxide particles by the oxidation-precipitation method in order to encapsulate these particles in polymer matrices composed of poly(acrylamide-styrene sulfonic acid sodium salt). Nanocomposites were synthesized by the incorporation of surface treated magnetic nanoparticles in the synthesized polymers via in situ inverse mini-emulsion polymerization process. The study parameter was the ionic monomer content in the synthesized polymers. The structure and the morphology of the magnetic nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR and XRD showed that pure magnetite was formed and successfully encapsulated in the composite nanoparticles. The polymer encapsulation could reduce the susceptibility to leaching and could protect the magnetite particle surfaces from oxidation. The ionic monomer content had a great effect on the magnetization behavior. Magnetite prepared by the oxidation precipitation method, of 50 nm mean particle size, was embedded successfully into the polymer nanogels with a reasonable magnetic response, as proved by vibrating sample magnetometer measurement. Magnetic nanocomposites were proven to be super-ferromagnetic materials.  相似文献   

10.
The network polysilanes (polysilynes) [RMe2SiCH2CH2Si]n, [R=Ph ( 1 ), 2‐Furyl ( 2 )] have been synthesized by room temperature reaction of the corresponding organotrichlorosilane with Na dispersion in tetrahydrofuran (THF) medium. The method allows the formation of high molecular weight polymers [Mw/PDI = 10,504/2.2 ( 1 ), 9176/1.5 ( 2 )] in improved yields than those obtained from classical Wurtz coupling reaction (Na, toluene, 110 °C). These polymers act as reducing agents for Ag(I) and Au(III) ions to afford stable metal nanoparticles of 4–8 nm size domains in toluene medium. The corresponding polymer–silver nanocomposites, 1a and 2a , are fluorescent in the green light region (λmax = ~ 530 nm) due to the formation of silver nanoclusters (AgNCs) along with the nanoparticles (AgNPs). A simple chemical approach has been developed to modulate the plasmonic and emission intensities of the nanocomposite 1a by reacting with varying concentrations (10?12 to 10?7M) of HgI2 in toluene. The method allows enhancement of the fluorescence intensity associated with AgNCs. The results are explained by invoking coupling between the energies of surface plasmon resonance and the nanocluster electronic transition. The polymer–gold nanocomposites, 1b and 2b , are non‐fluorescent and the plasmonic resonance at 530 nm associated with AuNPs is found to be insensitive to Hg(II) ions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Structure and dielectric relaxations of antibacterial sulfonated polystyrene (SPS) and silver nanocomposites (SPS/Ag) were investigated via broadband dielectric spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, differential scanning calorimetry, scanning electron microscopy, and wide‐angle X‐ray diffraction. SPS/Ag nanocomposites were prepared from SPS containing 2, 4, and 7 mol% of acid contents, followed by ion exchange and a reduction process. Silver nanoparticles were formed in the structural cavities of SPS films. The single glass transition temperature of the SPS copolymers was observed and increased with increasing acid contents and more enhanced with embedded silver nanoparticles because of the restriction of the polymer chain movement. The particle size of embedded silver nanoparticles was about 10 nm and well dispersed in SPS matrices. Four dielectric relaxations were observed above the glass transition temperature, and they were attributed to the fast segmental relaxation, the slow‐hindered segmental relaxation, relaxations associated with Maxwell–Wagner–Sillars interfacial polarization and electrode polarization. Weak local relaxations were observed due to the motion of sulfonated phenyl groups. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Superparamagnetic iron oxide particles with average size less than 20 nm were prepared by chemical co‐precipitation method in the air atmosphere. After that, polydimethyldiallyl ammonium chloride (PDDA) was used for wrapping iron oxide particles to obtain the core/shell nanocomposites. The parameters influencing properties of iron oxide particles and iron oxide/PDDA nanocomposites were investigated and optimized. The prepared iron oxide and nanocomposites were characterized by X‐ray diffraction (XRD) measurement, transmission electron microscopy (TEM), particle size and Zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometry (VSM), respectively. It was found that the iron oxide particles are cubic inverse spinel Fe3O4 with spherical shape. Superparamagnetic behavior of Fe3O4 with 73.114 emu/g is produced with NH4OH as precipitator, and decreased to 58.583 emu/g for Fe3O4/PDDA nanocomposites. The Zeta potential of nanocomposites is positive value. The results showed that Fe3O4/PDDA nanocomposites have excellent future using as a carrier for bonding with some negative charged particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Magnetic nanoparticles were created in or around the sulfonated (s) polystyrene domains in a poly[styrene–b–(ethylene–co–butylene)–b–styrene)] block copolymer (BCP) using an in situ inorganic precipitation procedure. The sBCP was neutralized with a mixed iron/cobalt chloride electrolyte, and the doped samples were converted to their oxides by reaction with sodium hydroxide. Transmission electron microscopy indicated the presence of nanoparticles having diameters of 20–50 nm. Metal oxide particle structures were studied using wide angle X–ray diffraction, which revealed that they were inverse spinel cobalt iron oxide crystals. Thermogravimetric analysis provided the weight percent of the inorganic component and nanocomposite thermal decomposition profile. Modulated differential scanning calorimetry studies suggested that the inorganic inclusions were selectively grown in the polystyrene hard block phase. These nanocomposites were shown, using alternating gradient magnetometry, to be ferrimagnetic at room temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1475–1485, 2005  相似文献   

14.
Water-soluble nanocomposites with narrow distribution of nanoparticles of pharmacophore bismuth and iron oxides have been obtained. The biopolymer matrix of the arabinogalactan polysaccharide has exhibited strong stabilizing properties with respect to transition metal oxides. The size of the spherical metal oxide nanoparticles has been found of 5–7 nm as per transmission electron microscopy. The exclusion liquid chromatography data have revealed that the change in the molecular mass parameters of arabinogalactan is due to the combined processes of self-assembly of nanocomposites and alkaline decomposition.  相似文献   

15.
The enhanced thermal and antimicrobial activity of silver nanoparticles prompts their uses in many medical devices. Mesua ferrea L. seed oil based antimicrobial biocompatible hyperbranched and linear polyurethane/Ag nanocomposites have been prepared in dimethylformamide without using any extra reducing agent. Formation of the stable and well-dispersed Ag nanoparticles was confirmed by ultra violet, X-ray diffractometeric, transmission electron microscopic and Fourier transform infra-red spectroscopic analyses. The enhancement of properties like thermal stability by (46-53)°C and 42 °C, tensile strength to ∼170% and ∼180% for hyperbranched and linear polyurethanes respectively was observed by the formation of nanocomposites. The cytocompatibility test based on the inhibition of RBC hemolysis showed that the materials lack cytotoxicity. The nanocomposites showed biodegradability as conferred from the bacterial degradation. Dose dependent excellent antibacterial activity of the nanocomposites against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria and antifouling activity against Candida albicans was observed.  相似文献   

16.
The polyaniline (PANI)/iron nanocomposites have been prepared by high‐energy ball milling under cryogenic temperatures, namely cryomilling, of PANI with Fe nanoparticles. It takes 5 h to refine the Fe into an average grain size of 20 nm and to get homogeneously dispersed in PANI matrix. The obtained PANI/Fe nanocomposites have a maximum conductivity of 0.78 S cm?1 after 2‐h cryomilling, whereas its coercivity increases monotonously with time in the range of experiment up to 10 h. It is found that the sizes of Fe particles have obvious effects on both electrical and magnetic properties. When compared with micrometer Fe particles as raw materials, Fe nanoparticles result in somewhat lower conductivity but a much higher coercivity exceeding 400 Oe. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1571–1576, 2008  相似文献   

17.
This study describes the preparation of nanocomposites fabricated from monodispersed iron oxide (Fe3O4) and polypyrrole (PPy) by in situ chemical oxidative polymerization. The monodispersed 4 nm Fe3O4 nanoparticles which served as cores were synthesized using the thermal decomposition of a mixture of Iron (III) acetylacetonate and oleic acid in the presence of high boiling point solvents. The resulting nanoparticles were further dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/Fe3O4 spherical templates that avoid the aggregation of Fe3O4 nanoparticles during the further preparation of the nanocomposites. The Fe3O4/PPy nanocomposites were then synthesized via in situ chemical oxidative polymerization on the surface of the spherical templates. Both field‐emission scanning electron microscopy (FESEM) and high‐resolution transmission electron microscopy (HRTEM) images indicate that the resulting Fe3O4 nanoparticles are close to spherical dots with a particle size of about 4 nm and a standard deviation of less than 5% (4 ± 0.2 nm). Structural and morphological analysis using FESEM and HRTEM showed that the fabricated Fe3O4/PPy nanocomposites are core (Fe3O4)‐shell (PPy) structures. Morphology of the nanocomposites shows a remarkable change from spherical to tube‐like structures as the content of monodispersed Fe3O4 nanoparticles increases from 9% up to 24 wt %. The conductivities of these Fe3O4/PPy nanocomposites are about six times higher than those of PPy without Fe3O4. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4647–4655, 2007  相似文献   

18.
In this study, hydrogel-silver nanocomposites have been synthesized by a unique methodology, which involves formation of silver nanoparticles within swollen poly (acrylamide-co-acrylic acid) hydrogels. The formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and surface plasmon resonance (SPR) which was obtained at 406 nm. The TEM of hydrogel-silver nanocomposites showed almost uniform distribution of nanoparticles throughout the gel networks. Most of the particles, as revealed from the particle-size distribution curve, were 24-30 nm in size. The X-ray diffraction pattern also confirmed the face centered cubic (fcc) structure of silver nanoparticles. The nanocomposites demonstrated excellent antibacterial effects on Escherichia coli (E. coli). The antibacterial activity depended on size of the nanocomposites, amount of silver nanoparticles, and amount of monomer acid present within the hydrogel-silver nanocomposites. It was also found that immersion of plain hydrogel in 20 mg/30 ml AgNO(3) solution yielded nanocomparticle-hydrogel composites with optimum bactericidal activity.  相似文献   

19.
Alumina/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by an in situ free‐radical polymerization process with 38 and 17 nm diameter γ‐alumina nanoparticles. At extremely low filler weight fractions (<1.0 wt % of 38 nm fillers or < 0.5 wt % of 17 nm fillers) the glass‐transition temperature (Tg) of the nanocomposites drops by 25 °C when compared to the neat polymer. Further additions of filler (up to 10 wt %) do not lead to additional Tg reductions. The thermal behavior is shown to vary with particle size, but this dependence can be normalized with respect to a specific surface area. The nanocomposite Tg phenomenon is hypothesized to be because of nonadhering nanoparticles that serve as templates for a porous system with many internal interfaces that break up the percolating structure of dynamically heterogeneous domains recently suggested by Long, D.; and Lequeux, F. Eur Phys J E 2001, 4, 371 to be responsible for the Tg reductions in polymer ultrathin films. The results also point to a far field effect of the nanoparticle surface on the bulk matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4371–4383, 2004  相似文献   

20.
We report on the synthesis of novel amphiphilic hyperbranched copolymers, namely Hyperbranched-[poly (ethylene glycol) methyl ether methacrylate-co-lauryl methacrylate] (H-[P(OEGMA-co-LMA)]), obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization utilizing the divinyl monomer, ethylene glycol dimethacrylate (EGDMA) as the branching agent. Molecular characterization by size exclusion chromatography (SEC) and proton nuclear magnetic resonance (1H-NMR) spectroscopy indicated the success of the polymerization. The self-assembly behavior in aqueous media was investigated by light scattering techniques and fluorescence spectroscopy. The hyperbranched copolymers form multimolecular aggregates of nanoscale dimensions with a low critical aggregation concentration. In addition, the model hydrophobic drug, curcumin (CUR), known also for its intrinsic fluorescence properties, was used in order to investigate the H-[P(OEGMA-co-LMA)] copolymers drug encapsulation ability. Curcumin is successfully loaded into the polymeric nanoparticles, as confirmed by dynamic light scattering and UV–Vis spectroscopy. Interestingly, curcumin hydrophobic interactions with the hyperbranched copolymers result in more well-defined co-assembled nanostructures, in terms of size and size distribution. The mixed copolymer-CUR nano-assemblies consist of small size nanoparticles (<100 nm) which exhibit relatively high size uniformity, colloidal stability and fluorescent properties. Overall, results signify that the biocompatible H-[P(OEGMA-co-LMA)] nanostructures could potentially serve as nanocarrier systems for drug delivery and bio-imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号