首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
Superabsorbents hydrogel nanocomposites based on starch-g-poly(sodium acrylate) and cellulose nanowhiskers (CNWs) were synthesized. A set of experiments was performed to evaluate the influence of some factors such as NaAc/starch mass ratio, crosslinker, and nanowhiskers amount in the swelling capacity and swelling kinetics. Increasing the NaAc/starch mass ratio up to 7 leads to an increase in the water uptake at a maximum value, however, higher ratios decreased that value due to the increase of crosslinking points. Similarly, the incorporation of CNWs up to 10 wt% provided an improvement in the swelling due to the hydrophilic groups from cellobiose units. Further, the incorporation of CNWs diminishes the water uptake. Besides, the CNWs improved the mechanical properties. SEM images showed that CNWs increase the average porous size of composites. The composites presented good responsive behavior in relation to pH and salt presence allowing those materials suitable for many potential applications.  相似文献   

2.
The thermoresponsive behavior and mechanical properties of nanostructured hydrogels, which consist of poly(acrylamide) nanoparticles embedded in a cross-linked poly(N-isopropylacrylamide) hydrogel matrix, are reported here. Nanostructured hydrogels exhibit a tuned volume phase transition temperature (T VPT), which varies with nanoparticle content in the range from 32 up to 39–40 °C. Moreover, larger equilibrium water uptake, faster swelling and de-swelling rates, and larger equilibrium swelling at 25 °C were obtained with nanostructured hydrogels compared with those of conventional ones. Elastic and Young’s moduli were larger than those of conventional hydrogels at similar swelling ratios. The tuned T VPT and the de-swelling rate were predicted with a modified Flory–Rehner equation coupled with a mixing rule that considers the contribution of both polymers. These behaviors are explained by a combination of hydrophilic/hydrophobic interactions and by the controlled inhomogeneities (nanoparticles) introduced by the method of synthesis.  相似文献   

3.
Copolymer network hydrogels were prepared by gamma irradiation of aqueous solutions of poly(vinyl pyrrolidone) (PVP) and acrylic acid monomer (AAc). The composition of the final hydrogels compared to the composition of the initial preparation solutions of hydrogels was determined. The chemical structure and nature of bonding was characterized by IR spectroscopy analysis, while the thermal durability of the prepared hydrogels was assessed by thermogravimetric analysis (TGA). The kinetic swelling in water and the pH-sensitivity of PVP/AAc copolymer hydrogels was studied. The drug release properties of PVP/AAc hydrogels taking methyl orange indicator as a drug model was investigated. The IR spectra indicate the formation of copolymer networks, whereas the TGA study showed that the PVP/AAc hydrogels possess higher thermal stability than pure PAAc and lower than PVP hydrogels. The kinetic swelling in water showed that all the hydrogels reached equilibrium after 24 h and that the degree of swelling increases with increasing the ratio of AAc in the initial feeding solutions. It was found that the degree of swelling of PVP/AAc hydrogels increases greatly within the pH range 4-7 depending on composition.  相似文献   

4.
In this work, we report on the synthesis and characterization of thermoresponsive poly(N-vinylcaprolactam), PNVCL, nanocomposite hydrogels containing nanocrystalline cellulose (CNC) by the use of frontal polymerization technique, which is a convenient, easy and low energy-consuming method of macromolecular synthesis. CNC was obtained by acid hydrolysis of commercial microcrystalline cellulose and dispersed in dimethylsulfoxide. The dispersion was characterized by TEM analysis and mixed with suitable amounts of N-vinylcaprolactam for the synthesis of PNVCL nanocomposite hydrogels having a CNC concentration ranging between 0.20 and 2.0 wt%. The nanocomposite hydrogels were analyzed by SEM and their swelling and rheological features were investigated. It was found that CNC decreases the swelling ratio even at small concentration. The rheological properties of the hydrogels indicated that CNC strongly influenced the viscoelastic modulus, even at concentrations as low as 0.1 wt%: both G′ and G″, and the viscosity increase with CNC content, indicating that the nanocellulose has a great potential to reinforce PNVCL polymer hydrogels.  相似文献   

5.
Halloysite nanotubes (HNTs) were added to cellulose NaOH/urea solution to prepare composite hydrogels using epichlorhydrine crosslinking at an elevated temperature. The shear viscosity, mechanical properties, microstructure, swelling properties, cytocompatibility, and drug delivery behavior of the cellulose/HNT composite hydrogels were investigated. The viscosity of the composite solution increases with the addition of HNT. The compressive mechanical properties of composite hydrogels are significantly improved compared with pure cellulose hydrogel. The compressive strength of the composite hydrogels with 66.7% HNTs is 128 kPa, while that of pure cellulose hydrogel is only 29.8 kPa in compressive strength. Rheological measurement suggests the resistance to deformation is improved for composite hydrogels. X-ray diffraction and Fourier transform infrared spectroscopy show that the crystal structure and chemical structure of HNT are not changed in the composite hydrogels. Hydrogen bonding interactions between HNT and cellulose exist in the composites. A porous structure of the composite hydrogels with pore size of 200–400 μm was found by scanning electron microscopy. The addition of HNT leads to decreased swelling ratios in NaCl solution and pure water for the composite hydrogels. Cytotoxicity assays show that the cellulose/HNT composite hydrogels have a good biocompatibility with MC3T3-E1 cells and MCF-7 cells. Curcumin is further loaded into the composite hydrogel via physical adsorption. The curcumin-loaded composite hydrogels show a strong inhibition effect on the cancer cells. All the results illustrate that the cellulose/HNT composite hydrogels have promising applications such as anticancer drug delivery systems and anti-inflammatory wound dressings.  相似文献   

6.
In this study, acrylamide-based hydrogels are synthesized by free radical solution polymerization in aqueous solution using ethylene glycol dimethacrylate (EGDMA) and its derivative polyethylene glycol dimethacrylate (PEGDMA) with different molecular weights as crosslinkers in the solution medium. The Fourier transform infrared spectroscopy technique is used for the structural characterization of the hydrogels. Dynamic swelling tests are conducted on acrylamide-based hydrogels for the determination of the swelling characteristics with respect to different crosslinking concentrations at room temperature. The parameters of swelling kinetics and diffusion mechanisms of the hydrogels are calculated with the aid of the data obtained. Accordingly, PEGDMA and EGDMA absorption capacity is found to increase with increasing concentrations. The lowest and highest water absorption capacities in PEGDMA810 and EGDMA crosslinked hydrogels are 22.73–48.39 and 10.15–16.02 g/g, respectively. Water intake of hydrogels crosslinked by EGDMA and PEGDMAs followed Fickian nature type diffusion except for PEGDM810, which has a swelling exponent greater than 0.5 and so does not follow a Fickian type of diffusion. PEGDM810 showed the fastest diffusion rate of between 5.87 × 10?4 and 10.87 × 10?4 cm2 s?1.  相似文献   

7.
聚乙烯醇水凝胶溶胀特性研究   总被引:30,自引:0,他引:30  
在前文对聚乙烯醇水溶液冰冻凝胶化浓度依赖性研究基础上,对接触浓度(C)以上聚乙烯醇水溶液通过冰冻-融化处理,制得了一种含水率高达95~98%的水凝胶.系统研究了该水凝胶在蒸馏水中的溶胀及溶解特性.得到了一个与实验结果相吻合的溶胀动力学方程:Q1=Qe-(Qe-QO)/ekt,及平衡溶胀比Qe与浓度之间的定量关系:Qe=60.3-4.45×102C.发现当冰冻-融化次数N≤5时,平衡溶胀比Qe及溶解量W与冰冻-融化次数(N)间满足幂函数关系:Qe。W通过对聚乙烯醇水凝胶平衡溶胀比与经冰冻处理的聚乙烯醇水溶液特性粘数进行比较,发现反映链间氢键凝聚缠结效应与反映链内氢键凝聚缠结效应的定量指标具有等效性.  相似文献   

8.
Novel cellulose hydrogels were synthesized through a "one-step" method from cellulose, which was dissolved directly in NaOH/urea aqueous solution, by using epichlorohydrin as crosslinker. Structure and properties of the hydrogels were characterized by using SEM, NMR, and water absorption testing. The hydrogels are fully transparent and display macroporous inner structure. The equilibrium swelling ratios of the hydrogels in distilled water at 25 degrees C are in the range from 30 to 60 g H(2)O/g dry hydrogel. Moreover, the reswelling water uptake of the hydrogels could be achieved to more than 70% compared with their initial swelling states. This work provided a simple and fast method for preparing eco-friendly hydrogels from unsubstituted cellulose.  相似文献   

9.
Rod-like cellulose nanowhiskers and spherical cellulose nanoparticles were prepared from wood-pulp-derived cellulose powder by mechanical refining processes such as high-pressure homogenization (HPH) and ball-milling (BM). The nanowhiskers obtained by the HPH method were found to be 200–500 nm long and 11–16 nm wide. The diameters of the nanoparticles were in the range 40–200 nm, depending on the BM time, and were reduced to 25–50 nm after extra HPH. By adjusting the BM time, cellulose nanoparticles having different polymorphs with similar morphologies were prepared. The X-ray diffraction patterns revealed the recrystallization of cellulose I (1 h of BM time) or cellulose II (4–8 h of BM time) in ball-milled nanoparticles after water washing and solvent exchange treatments. The nanowhisker widths derived from the specific surface areas (SSA) by adsorption methods such as Congo red dye, nitrogen, and water vapor, sorptions were in agreement with those obtained from transmission electron microscopy and atomic force microscopy images. Similar SSA values were obtained for micro- and nano-scale cellulose materials using water vapor adsorption methods, and the SSAs of nanoparticles obtained by different adsorption methods are also discussed.  相似文献   

10.
In this work, epichlorohydrin (Ech) crosslinked cellulose hydrogels have been prepared and loaded with urea (Ur) for controlled release as a fertilizer. A detailed study of swelling behavior of these hydrogels and their urea releasing capacity has been carried out under various experimental conditions. The dynamic swelling and release data has been applied on various kinetic models. Finally, using a novel Sprinkler Based Irrigation (SBI) model, a model plant has been irrigated with water in the presence of urea-loaded hydrogel. It was found that plants, irrigated in the presence of urea-loaded hydrogel exhibited a better growth as compared to the control plant sample.  相似文献   

11.
The crystallinity, morphology and water swelling of a series of hydrogels based on poly(ethylene glycol)s (PEG), ¯n = 1610–8490 crosslinked by 1,2,6-hexanetriol and the stoichiometric equivalence of dicyclohexylmethane-4,4′-diisocyanate as coreactant to form an infinite urethane-linked network are examined. The equilibrium water uptake was found to be directly related to the ethylene oxide content irrespective of either ¯n(PEG) or the degree of crosslinking. Crystallinity affects the rate of swelling in water. Caffeine was incorporated into slices of hydrogels over a wide range of compositions and water contents by swelling with a solution of the drug. After drying then reswelling to desorb the caffeine the release profiles were drawn, and morphological factors contributing to the bolus and period of zero - order release are propounded.  相似文献   

12.
Hydrogels with high water uptake were prepared by ionizing radiation induced crosslinking in aqueous solutions of four cellulose derivatives (carboxymethylcellulose sodium salt—CMC-Na, methylcellulose—MC, hydroxyethylcellulose—HEC and hydroxypropylcellulose—HPC). The gel fraction increased with absorbed dose, while water uptake decreased. At high polymer concentrations lower gel fractions were found due to the lower polymer chain mobility and inhomogeneity at low water content. The swelling rate gradually slowed down after 4–5 h. CMC and HEC gels reached equilibrium after 24 h, while HPC and MC gels required longer immersion times. Gels showed second-order swelling kinetics in water. The mechanism of the water diffusion proved to be anomalous. In pure water, CMC gels showed the highest, while HPC and MC gels the lowest water uptake. The derivatives had different sensitivities to ionic strength in the swelling solution. The salt type also proved to be a significant factor at uniform ionic strength. Thus different cellulose derivative based gels may be preferred at various applications depending on the environment.  相似文献   

13.
Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834×10−6 and 1323×10−6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes.  相似文献   

14.
Thermo-sensitive poly (N-isopropylacrylamide) (PNIPA) hydrogel with fast response rate was prepared by polymerizing N-isopropylacrylamide (NIPA) in an aqueous hydroxyl-propyl-methyl cellulose solution. The volume phase transition temperature of PNIPA hydrogels was characterized by differential scanning calorimetry (DSC), and the surface morphology was observed by scanning electron microscopy (SEM). The swelling ratios of the hydrogels at different temperatures were measured. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. In comparison with a conventional PNIPA hydrogel prepared in water, the hydrogel synthesized in aqueous hydroxyl-propyl-methyl cellulose solution has higher swelling ratios at temperatures below the lower critical solution temperature and exhibits a much faster response rate to temperature changes. For example, the hydrogel made in aqueous hydroxyl-propyl-methyl cellulose solution lost 89% water within 1 min and about 93% water in 4 min, whereas the conventional hydrogel lost only about 66% water in 15 min from the deswelling measurement in similar conditions. Translated from Chinese Journal of Applied Chemistry, 2006, 23(6): 581–585 (in Chinese)  相似文献   

15.
We synthesized, thermo- and pH-sensitive gels and tested them as skin extenders. Our aim is the development of copolymer and composite hydrogels that, when implanted under the human skin, swell osmotically and thereby induce skin growth. In the course of the polymerization reaction, we produced copolymers with variable compositions, starting from different acrylic compounds [N-isopropyl-acrylamide (NIPAAm), acrylamide (AAm), and acrylic acid (AAc)]. The mechanical strength and the swelling stability of the gels are enhanced by the addition of fillers [Na-montmorillonite and Na-montmorillonites organophilized with alkylammonium ions (Cn-m.), n?=?4, 12, 18]. With this method we synthesized composite hydrogels. We observed that in the case of composites synthesized with the addition of fillers, relatively low filler contents (1–5 wt.%) resulted in more extensive swelling and stronger gel structure. During the experiments, the monomer composition (0/100–100/0 mol% NIPAAm/AAm or AAc) and the cross-link density (50–1500 mol%) of the gels (M/C ratio) and, in the case of composites, the quality and quantity of fillers are varied. The filler content of composites varies between 1 and 25 wt.%. The extent of swelling and the viscoelastic properties can be manipulated through the ratios of these parameters. In the case of certain copolymer and composite gels, values of desorption enthalpy (ΔH m) corresponding to the actual water contents were also determined by thermoanalytical measurements (differential scanning calorimetry, DSC). Swelling values determined by gravimetry and enthalpies calculated from DSC measurements were found to be in good correlation. Even in the case of the relatively hydrophobic poly(NIPAAm)-based gels, an enthalpy value of 98.41 kJ/mol was obtained, which is twice the value measured in pure water (41.74 kJ/mol). Evaluation and comparison of the rheological and DSC results also allowed conclusions to be drawn concerning the types of interaction operating among the three components of the system, i.e., the polymer skeleton and the filler and water molecules.  相似文献   

16.
快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成及表征;N-异丙基丙烯酰胺;水凝胶;温敏性;快速响应  相似文献   

17.
A novel carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC)-based hydrogel with sensitivity to environmental changes, pH and salts was synthesized by using fumaric acid and malic acid at various concentrations. Water uptake capacity of hydrogels was investigated in distilled water, various salt and pH solutions. From pH-dependent studies, it was found that greater water uptake values were observed at greater pH values (7.4), and reversible pH responsiveness of CMC–HEC based hydrogels was obtained. Decreasing the water uptake capacity with increasing of the charge of the metal cation (Al3+ < Ca2+ < Na+) demonstrated metal ion responsiveness of CMC–HEC-based hydrogels. From tensile tests of the hydrogels, a greater crosslinker concentration led to greater tensile strength values. Thermogravimetric analysis and scanning electron microscopy images were used to determine the thermal stability and to observe morphological properties of the samples, respectively.  相似文献   

18.
Polymeric hydrogels are crosslinked polymers which display high sorption capacity in water and water solution. In this work, cellulose based hydrogel was prepared with divinylsulfone as crosslinking agent. Cellulose based hydrogel was synthesized as a mixture of sodium salt of carboxymethylcellulose (CMCNa) and hydroxyethylcellulose (HEC). The effect of chemical composition, temperature and reaction time during crosslinking processes was investigated both the value of equilibrium water uptake and swelling ratio. Infrared spectra of the synthesized polymeric networks were studied to investigate the chemical structure of crosslinking reaction qualitatively. The thermal properties and morphology of the obtained cellulose based hydrogels were observed by means of TGA (thermo-gravimetry analysis) and SEM (scanning electron microscopy), respectively. Crosslinking of CMCNa/HEC polymeric network results in a decrease in thermal stability. Hydrogel with weight ratio of CMCNa/HEC 5 to 1 at reaction temperature of 60 °C gave the highest absorption capacity in distilled water.  相似文献   

19.
Novel composite hydrogels were synthesized by grafting of acrylic acid onto pineapple peel cellulose and addition of kaolin or sepia ink in ionic liquid 1-butyl-3-methylimidazolium chloride, using potassium persulfate as a free radical initiator and N,N′-methylenebisacrylamide as a crosslinking agent. The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscope, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Kaolin and sepia ink improved the thermal stability of the hydrogels. Swelling studies on the prepared hydrogels indicated sepia ink and kaolin affected the swelling ratio and pH-responsive properties. The optimum swelling pH value for the hydrogels was shifted from 7.0 to 12.0 in the presence of sepia ink. The effects of kaolin and sepia ink contents on methylene blue adsorption capacity of the prepared hydrogels were also investigated. The optimum methylene blue adsorption capacity reached 153.85 mg/g at 10% of kaolin and 142.21 mg/g at 20% of sepia ink. The pseudo-second-order kinetic model fit well with the experimental results, indicating the adsorption was chemisorption behavior.  相似文献   

20.
In this work, calcium alginate hydrogels have been prepared by a new technique, called ‘diffusion through dialysis tube’ (DTDT) which involved transfer of crosslinking ions into alginate solution via a dialysis tube with a molecular weight cutoff of 8 k Da. The various hydrogels, prepared with varying degree of crosslinking, were characterized by FTIR, XRD and TG analysis. We also investigated their dynamic water absorbency in phosphate buffer saline (PBS) of pH 7.4 and the data were interpreted in terms of various kinetic models. The equilibrium water uptake data was used to determine network parameters of hydrogels. Finally, the stability and water absorbency of these hydrogels were enhanced to a desired level by using crosslinker solutions, composed of Ba++/Ca ++and Zn++ / Ca++ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号