首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis of poly(o-anisidine) doped with various protonic acids by using ammonium persulphate as oxidizing agent were carried out in aqueous acid media. Influences of protonic acids on the physicochemical properties were investigated. The various process parameters were optimized to obtain poly(o-anisidine) in the conducting salt phase form. The results are discussed with references to different protonic acids. It was observed that poly(o-anisidine) is highly soluble in organic solvents, such as m-cresol and N-methyl pyrrolidinone (NMP). The polymers were characterized by UV-Visible, FTIR, SEM, XRD and conductivity measurements. A result shows that, different types of dopant acids HCl, H2SO4 and HClO4 affect the morphology and electrical conductivity of the polymer. The electrical conductivity of the polymer follows the order HCl >H2SO4>HClO4. Thus the effect of dopant ion type and the size of its negative ions influence the physico-chemical properties. UV-Vis absorption spectra shows peaks at 740–783 nm with shoulder at 380–420 nm as characteristic peaks for the emeraldine salt (ES) phase of poly(o-anisidine) POA. The FTIR spectra show a broad and intense band at ~2800–3001 cm?1 and ~1159–1170 cm?1 that account for the formation of ES phase of the polymer. The X-ray diffraction spectra show a characteristic peak at 20–30o, 2θ range which reveals partial crystalline structure. The conductivity of the poly(o-anisidne) salt was found to be in the range of 10?3 to 10?2 S/cm. SEM studies of poly(o-anisidine) doped with HCl shows the continuous granular uniform morphology with sub-micrometer evenly distributed particles of size ~100–200 nm.  相似文献   

2.
In the presence of acrylic acid (AA) as a primary dopant, polyaniline (PANI) doped with poly(acrylic acid) was successfully synthesized by using ammonium persulfate (APS) as initiator and oxidizing agent. The effect of experimental conditions on the polymer yields was systematically studied. It was found that the polymer yield can be as high as 65%, and this value strongly depends on synthesis conditions, such as the reaction time, the molar ratio of oxidizing agent to aniline monomer, the concentration of reactants and reaction temperature. The molecular weight ( ) of main chains of the de‐doped PANI is estimated to be 32,000–53,000. Based on the data of FT‐IR, UV‐vis, 13C‐nuclear magnetic resonance (NMR), elemental analysis and electrical conductivity measurement, the emeraldine salt form of PANI was confirmed and the molecular structure of the resulting PANI‐AA was proposed. Accordingly the reaction mechanism was discussed and it was convinced that the polymerization reaction of AA is initiated by APS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.

Single step polymerization of poly(o‐toluidine) was carried out by using ammonium persulphate as an oxidizing agent. Formation of the conducting emeraldine salt phase of the polymer was confirmed by the UV‐visible and FT‐IR spectroscopic analysis. The elemental composition of the polymer was evaluated by using a CHNS analyzer. Thermal stability of these polymers was investigated by the thermogravimetric analysis. Among the three polymeric acids used for doping purposes, poly(acrylic acid) doped material was found to show less thermal stability compared to poly(styrene sulphonic acid) and poly(vinyl sulphonic acid) doped poly(o‐toluidine).  相似文献   

4.
Summary: Polyaniline has elicited the most interest due to its wide range of applications in many fields. However insolubility and infusibility are the main factors that affect the application of polyaniline. We have studied and worked on the synthesis of dispersible polyaniline and the results are described here. Poly (N-methyl aniline) PNMANI nanoparticles with controllable morphology and sizes were prepared by removing a routine operation stirring from the conventional method of synthesis and using acrylic acid as a soft template. It is found that polymer formed in the non-stirring experiment predominantly produces highly dispersible, smooth nanoparticles with controllable morphology and sizes. These nanoparticles have large surface area and thereby high conductivity. Mechanism for generation of well dispersed and smooth nanoparticles is supported by homogeneous nucleation of polymer nanoparticles in non stirred experiments and the use of acrylic acid as a soft template. In the case of the experiment where the reaction mixture was stirred at 1000 RPM comparatively coral-like, granular and uncontrolled polymer particles were formed. These coral like granular particles were having comparatively small surface area and less conductivity. Conductivity measurements, UV- visible, XRD, FTIR spectroscopy and SEM were performed to characterize the product. This method can be used to synthesize highly conductive polymers in minimum time and bulk quantity.  相似文献   

5.
Uses for aromatic polyimides have developed rapidly in recent years due to their outstanding properties1,2. However, their applications have been limited in many fields because aromatic polyimides are normally insoluble and infusible. The poly (ether imide)s (PEI) prepared by the polymerization of bisphenol-A diphthalic anhydride (BPA dianhydride) and m-phenylenediamine (m-PDA) ,developed by General Electric Plastics and marketed under the trade name Ultem 1000, has excellent processabili…  相似文献   

6.
The poly(2-chloroaniline) was prepared by in situ chemical oxidative polymerization method using ammonium thiosulphate as an oxidant and methanesulfonic acid as a dopant. The optical absorption spectra showed bands for π-π* transition of the benzenoid ring at 265 nm and at 350 nm for n-π* transition of the quinonoid ring. The broad band appeared around 550 nm was due to transition of electrons from the valance band to the conduction band, this also confirmed the good electrical conductivity of the polymer. The X-ray diffraction pattern showed characteristic diffraction peak at 2θ = 26° confirming a emeraldine salt form of the poly(2-chloroaniline). The electrical conductivity of the polymer measured by the two probe method at room temperature was 2.21×10?3 S/cm, which was found to be thermally activated. The linear increase in conductivity with increase in the temperature suggested the electron hopping mechanism. The methanesulfonic acid doped poly(2-chloroaniline) presents a linear dependency of its electrical resistance with an increase in ammonia gas concentration (1 ppm to 300 ppm) and creates a promising sensing material for ammonia gas sensing applications.  相似文献   

7.
Poly(lactic acid)(PLA)is one of the most important bio-plastics,and chemical modification of the already-polymerized poly(lactic acid)chains may enable optimization of its material properties and expand its application areas.In this study,we demonstrated that poly(lactic acid)can be readily dissolved in acrylic acid at room temperature,and acrylic acid can be graft-polymerized onto poly(lactic acid)chains in solution with the help of photoinitiator benzophenone under 254 nm ultraviolet(UV)irradiation.Similar photo-grafting polymerization of acrylic acid(PAA)has only been studied before in the surface modification of polymer films.The graft ratio could be controlled by various reaction parameters,including irradiation time,benzophenone content,and monomer/polymer ratios.This photo-grafting reaction resulted in high graft ratio(graft ratio PAA/PLA up to 180%)without formation of homopolymers of acrylic acid.When the PAA/PLA graft ratio was higher than 100%,the resulting PLA-g-PAA polymer was found dispersible in water.The pros and cons of the photo-grafting reaction were also discussed.  相似文献   

8.
New azobenzene sulfonic acid dopants were synthesized by diazotized coupling reaction of sulphanilic acid diazonium salt with commercially available raw materials such as phenol, m-cresol and 4-phenylphenol. The structures of the dopants are confirmed by NMR and FT-IR. Polyaniline emeraldine base was doped by these new azobenzenesulfonic acid dopants in two different solvent medium such as methanol and N-methylpyrrolidinone to produce green emeraldine salt. The doping process was confirmed by FT-IR and UV-vis spectroscopy. The effect of composition of dopant on the conductivity of the polyaniline was investigated and the results suggest that the conductivity increases with the increase in the dopant concentration and attained maxima for more than 38% in the feed. The conductivity measurements reveal that all the dopants equally effective in producing in high conductivity in the range of 0.02 S/cm and the conductivity of the doped samples are insignificant to the structural difference in the dopant. WXRD and SEM analysis indicate that the doped samples are highly amorphous and porous in nature. The thermal analysis by TGA indicate that all the doped materials were highly stable up to 300 °C for high temperature applications.  相似文献   

9.
蒋绪 《高分子科学》2014,32(1):35-42
The polyaniline/partially phosphorylated poly(vinyl alcohol)(PANI/P-PVA) nanoparticles were prepared by the chemical oxidative dispersion polymerization of aniline monomer in 0.5 mol/L HC1 aqueous media with the partially phosphorylated poly(vinyl alcohol) (P-PVA) as the stabilizer and co-dopant. The PANI/P-PVA nanoparticles were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), electrical conductivity measurements and re-dispersion stability testing. All the results were compared with the properties of the conventional polyaniline in the emeraldine salt form (PANI ES). It was found that the feeding ratio of P-PVA obviously affected the morphology, re-dispersion stability and electrical conductivity of the PANI/P-PVA nanoparticles. When the feeding ratio of P-PVA ranged from 40 wt% to 50 wt%, the PANI/P-PVA nanoparticles showed spherical shape with good uniformity, significant re-dispersion stability in aqueous media and good electrical conductivity.  相似文献   

10.
负载纳米银复合微球制备及其催化性能   总被引:1,自引:0,他引:1  
以具有温度和pH双重敏感性能的N-异丙基丙烯酰胺(NIPAM)共聚丙烯酸(AA) P(NIPAM-co-AA)高分子微凝胶为模板, 以乙醇为还原剂, 原位还原得到负载纳米银的微米尺度Ag/P(NIPAM-co-AA)复合微凝胶材料. 通过扫描电子显微镜(SEM)、X射线衍射(XRD)仪和紫外-可见(UV-Vis)分光光度计等对复合材料的形貌、组成和催化性能进行表征. 研究结果表明, Ag/P(NIPAM-co-AA)复合微球具有均一的表面结构, 微凝胶的限域作用显著提高了纳米银的分散性和稳定性. 另外, Ag/P(NIPAM-co-AA)复合微球对对硝基苯酚(4-NP)的还原具有较好的催化活性, 且其催化活性与微凝胶网络结构的溶胀、收缩行为有一定关系, 即模板微凝胶的温敏特性可以实现对对硝基苯酚催化反应活性的调控作用.  相似文献   

11.
In recent years,the organic ferromagnets have drawn growing attention due to their characteristics of structural diversities,low density,and readily processing1-3.Design and synthesis of magnetic polymers are one of great challenges in today′s magnetic material research,and some significant achievements have been made in this field4,5.In this article,we describe the synthesis of acrylamide-type polymer with pendent thiazolyl groups(Scheme1).The as-prepared polymer exhibited better solubility …  相似文献   

12.
A new method for preparing poly(acrylic acid) (PAA) films on silicon oxide surfaces with smooth morphology has been developed. Acrylic acid (AA) was preferably adsorbed on silicon oxide surfaces in AA/ chloroform binary liquids and formed a hydrogen-bonded organized structure, which was called molecular macrocluster. AA macroclusters on silicon oxide surfaces were in-situ polymerized to obtain molecularly flat polymer films with thickness up to 10 nm. In-situ polymerizations were conducted by photo-irradiation in the presence of a photo initiator, 2,2-dimethoxy-2-phenylacetophenone (DPA). As a reference, the adsorption of PAA polymerized in the bulk solution was examined on silicon oxide surfaces. A series of techniques such as attenuated total reflection–FTIR (ATR-FTIR) spectroscopy, ellipsometry and atomic force microscopy (AFM) was utilized for characterizing two types of films. It was found that flat PAA films with linear hydrogen-bonded COOH could only be obtained by in-situ polymerization, which demonstrated this method was an effective way for preparing molecularly uniform polymer films. The surface morphology and thickness of obtained PAA films were found to be dependent on the monomer concentration, initiator amount and photoirradiation time. Molecularly uniform and flat PAA films were obtained after 5 min irradiation at 0.8 mol% AA in the presence of 5 wt% DPA.  相似文献   

13.
Summary: A process for preparation of poly(acrylic acid) particles dispersed in oil is presented. The process comprises two steps: the first step involves the preparation of a poly(acrylic acid) solution, while the second step consists in the preparation of the polymer particles by dispersing the polymer solution in an organic phase. During the second step, modification of the polymer chain structure can be performed through chemical reactions. One of the advantages of the proposed process is the possibility to produce particles loaded with drugs or other chemical compounds. Besides that, if the continuous phase is vegetable oil, purification of the reaction medium may not be necessary.  相似文献   

14.
A high-conducting salt-doped polymer electrolyte layer has been created here for use in photocell technologies. The solution casting method is used to produce ion conducting film where poly (methyl methacrylate) (PMMA) is used as the host polymer and potassium iodide (KI) as the dopant. The conductivity and amorphic increases of the polymer electrolytes with the addition of salt concentrations helps in the enhancement of the charge transfer properties. Using electrochemical impedance spectroscopy (EIS), ionic conductivity is evaluated where maximum conductivity is 3.99 × 10−6 S cm-1 at 20 wt% KI concentration. Polarized optical microscopy (POM) shows the reduction in crystallinity by salt doping, while Fourier transforms infrared spectroscopy (FTIR) shows the complexation as well as composite nature of the film. Ionic transference number (tion) measurement shows the predominantly ionic nature of this polymer electrolyte.  相似文献   

15.
利用可控微乳液法合成粒径19~200 nm,且呈球状分布均匀的聚甲基丙烯酸甲酯/聚(异戊二烯-co-苯乙烯)(PMMA/PIS)核壳纳米粒子,通过水合肼产生原位氢的技术,对合成的PMMA/PIS乳液体系进行直接常压氢化,对影响氢化度的因素、聚合物氢化前后结构、热性能进行了研究.结果显示,聚合物粒径、水合肼及双氧水用量等都是影响聚合物的氢化度的因素.研究发现,氢化以PMMA为核,PIS为壳的核壳结构乳液可以显著提高PIS氢化程度,减少氢化过程中凝胶产生.利用FTIR、~1H-NMR、Na_2S_2O_3滴定法测定了乳液的氢化度.结果表明,当聚合物粒径小于200 nm时,乳液氢化度可达到95%以上,且无凝胶现象产生.GPC结果证明了反应是氢化而非凝胶过程.利用TEM、DLS测试了氢化后乳液的核壳结构和粒径.实验结果显示,PMMA/HPIS为核壳纳米结构.TGA结果显示,当氢化度为98%时,聚合物耐热性提高41°C.  相似文献   

16.
程林  王凤洋 《应用化学》2011,28(2):149-153
将等质量的嵌段聚合物聚乙烯基萘聚丙烯酸和聚氧化乙烯聚丙烯酸(P2VN-b-PAA和PEO-b-PAA)溶解于N,N′-二甲基甲酰胺(DMF)中,加入小分子二元胺(1,2-丙二胺,PDA),制备出均匀的两亲性杂壳聚合物纳米粒子(MSNPs)。 该粒子以PEO和P2VN混合嵌段为壳层,非共价键交联的PAA嵌段为核,在水相及有机相中均可稳定分散,具有典型的两亲性特点。 扫描电子显微镜和光散射测试结果表明,该杂壳聚合物粒子(MSNPs)的粒径在300 nm左右,分布较均匀,并显示出壳层可塌缩变形的疏松核(软粒子)特征。 以该聚合物粒子(MSNPs)为模板,可以方便制备出金纳米粒子簇合物。  相似文献   

17.
用化学聚合方法合成了聚丁基噻吩导电材料,并研究了不同的聚合条件对聚合物性能的影响。聚丁基噻吩导电材料具有较好的稳定性和加工性,其掺杂态的导电率可达到10s/cm。  相似文献   

18.
The electrically conductive polypyrrole/dodecylbenzene sulfonic acid/poly(N‐isopropylacrylamide‐co‐acrylic acid) (PPy/DBSA/poly(NIPAAm‐co‐AA)) composite microgels were synthesized by a chemical oxidation of pyrrole in the presence of DBSA as the primary dopant, and poly(NIPAAm‐co‐AA) microgels as the polymeric codopant and template, in which APS was used as the oxidant. It was proposed to prepare “intelligent” polymer microgel particles containing both thermosensitive and electrically conducting properties. The polymerization of pyrrole took place directly inside the microgel networks, leading to formation of composite microgels and the morphology was observed by transmission electron microscope. PPy particles interacted strongly with microgels, as the acid groups of microgels acted as the polymeric codopant. The composite microgels thus formed showed electrically conducting behavior dependent on humidity and temperature. At temperatures lower than lower critical solution temperature, the conductivity decreased with increasing the humidity and a small hysteresis phenomenon was observed. The hysteresis became indistinct when temperature was near volume phase transition temperature. However, after the treatment of high temperature and high humidity, the conductivity increased surprisingly due to the structure reorganization inside the composite microgels. The distinctive functionality of the PPy composite microgels was expected to be utilized in many attractive applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1648–1659, 2006  相似文献   

19.
Various protonated poly(o‐anisidine) (PoAN)/poly(vinyl alcohol) (PVA) composites were prepared with different types of acids: sulfuric (SA), p‐toluene sulfonic (TSA), camphor sulfonic (CSA), and p‐dodecylbenzene sulfonic (DBSA). In the visible spectrum of each composite in dimethyl sulfoxide, three absorption peaks were observed at 440, 620, and 860 nm. The peaks at 440 and 860 nm, which were enhanced with the increasing content of acid‐doped PoAN in the PVA matrix, were attributed to the radical cation and localized polaron generated in the conducting polymer. However, the peak at 620 nm was ascribed to the emeraldine base (EB) form of PoAN; that is, a portion of the acid was detached from the conducting polymer to form EB‐PoAN and free acid. The linear dependence of the logarithmic electrical conductivity on the variation of humidity, which was observed for all the composites, was caused by the salt–base transition of the conducting polymer, that is, by the movement of free acid between the active sites of the conducting polymer and the strongly bound water existing in PVA, which in turn depended directly on the environmental humidity. The response time of the composites to humidity was shortened with a decrease in the size of the dopant anions: DBSA > CSA > TSA > SA. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4343–4352, 2000  相似文献   

20.
Polyaniline and poly(o-toluidine) doped with p-toluene sulphonic acid (p-TSA) were synthesized by in situ chemical polymerization method using ammonium per sulphate as an oxidizing agent. This is a novel polymerization process for the direct synthesis of emeraldine salt phase of the polymer. The polymers were characterized by using UV-Vis and FT-IR spectroscopy, SEM, elemental analyzer, TGA/DSC and conductivity measurements. Thermal analysis shows that poly(o-toluidine) is less thermally stable compared to polyaniline. The less conductivity in poly(o-toluidine) is due to the cumulative steric as well as electronic effect of the bulky methyl substituent present on the benzene ring. High temperature conductivity measurements show ‘thermal activated behavior’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号