首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Graphene (G) and graphene oxide (GO) were added into epoxy resin (EP) respectively via chemical modification and physical ultrasound technology to improve the tribological behaviour of EP coating. The topographies of G and GO were detected by scanning probe microscopy. The chemical structures of the fillers before and after modification were identified by Fourier transform infrared spectrometer. The across‐section topographies of the coatings were detected by scanning electron microscopy. The tribological behaviour of the coatings was evaluated by UMT‐3 tribology tester, surface profiler and scanning electron microscopy. The results revealed that the coefficient of friction of the coatings decreased, and the wear resistance of the coatings improved with the addition of the G and GO. GO could improve the tribological performance of EP further compared to G. When containing 0.5 wt% G and 0.75 wt% GO, the coatings had the lowest coefficient of friction and best wear resistance. When the contents of G reached 0.75 wt%, and GO reached 1 wt%, the tribological performance of the composite coatings decreased as a result of the agglomeration of the fillers. Finally, the anti‐friction and anti‐wear mechanisms of G‐EP and GO‐EP composite coatings were discussed in detail based on the results obtained in the preceding texts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reported an inorganic route that uses potassium silicate, which is one type of alkali silicate as an inorganic modifier, taking advantage of its instability and water condensation to decorate graphene oxide (GO) with nano‐SiO2. The ingredients of prepared nanocomposites were characterized by Fourier‐transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS), and the thermodynamic property was tested by thermal gravimetric analysis (TGA). Scanning electron microscopy (SEM) was used to observe the morphology of SiO2‐GO nanocomposites. All the analyses above revealed the nano‐SiO2 (<100 nm) was deposited on the surface of GO by chemical bonds. In the meantime, the dispersion test illustrated that nano‐SiO2 played an important role in improving the dispersity of GO. The effect of SiO2‐GO nanocomposites on barrier and corrosion protection performance of SiO2‐GO nanocomposites was tested by immersion experiment and electrochemical impedance spectroscopy (EIS). The results indicated that GO was helped to block the corrosion of aggressive medium; moreover, SiO2‐GO nanocomposites had the best anticorrosion performance and the slowest rate of corrosion because of its good dispersity with waterborne epoxy coatings.  相似文献   

3.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy/glass fiber (EP/GF) composite laminate, with the aim of improving the overall composite mechanical performance. Different mechanical characterization techniques were used to determine the mechanical performance, including: tensile stress strain, double cantilever beam (DCB) mode-I fracture toughness and dynamic mechanical thermal analysis (DMTA). Scanning electron microscopy (SEM) was used to support the results and conclusions. The results demonstrated remarkable enhancements in the mechanical performance of EP/GF composite laminates by incorporation of functionalized graphene oxide (FGO) nanofiller, whilst the mechanical performance of the GO reinforced composite only improved marginally. Finally, the mechanical performance of the EP/GF/FGO multi-scale composites was found to be dependent on the type of FGO functional groups; of which EDA exhibited the highest performance. These investigations confirmed that the EDA-FGO-reinforced EP/GF composites possess excellent potential to be used as multifunctional engineering materials in industrial applications.  相似文献   

4.
In this work, we reported the synergistic effect of functional carbon nanotubes (CNTs) and graphene oxide (GO) on the anticorrosion performance of epoxy coating. For this purpose, the GO and CNTs were firstly modified by the 3‐aminophenoxyphthalonitrile to realize the nitrile functionalized graphene oxides (GO‐CN) and carbon nanotubes (CNTs‐CN). As modified GO‐CN and CNTs‐CN were characterized and confirmed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and gravimetric analyzer. It was found that about 19 and 24 wt% of 3‐aminophenoxyphthalonitrile were grafted onto the surface of the GO and CNTs, respectively. The electrochemical impedance spectroscopy results showed that the GO‐CN&CNTs‐CN hybrid materials exhibit a remarkable superiority in enhancing the anticorrosion performance of epoxy coatings. Significant synergistic effect of the lamellar structural GO‐CN and CNTs‐CN on the anticorrosion performance of epoxy composite coatings was designed. Besides, the epoxy coating with 1 wt% of the GO‐CN&CNTs‐CN hybrid exhibited the best anticorrosion performance, in which the impedance showed the largest one (immersion in 3.5 wt% of NaCl solution for 168 hr). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, the hyperbranched polyester were successfully grafted onto graphene oxide (GO). The mechanical performance and curing kinetics of epoxy resin (EP), EP/ graphene oxide (EP/GO), and EP/ hyperbranched polyester grafted GO (EP/GO‐B) were investigated by means of mechanical tests and differential scanning calorimetry (DSC). Results revealed that the presence of GO lowered the cure temperature and accelerated the curing of EP, and the addition of GO‐B exhibited a stronger effect in accelerating the cure of EP compared with GO. Activation energies were calculated using Kissinger approach, and Ozawa approach, respectively. Results revealed lowered activation energy after the addition of GO or GO‐B at low degrees of cure, indicating that GO had a large effect on the curing reaction. The presence of GO facilitated the curing reaction, especially the initial epoxy‐amine reaction. Moreover, GO‐B exhibited better performance. Related mechanism was proposed.  相似文献   

6.
Graphene oxide was reduced into reducing-graphene oxide (r-GO) successfully using gallic acid (GA) as a green reducing agent. Biobased gallic acid epoxy resin (GAER) was synthesized from renewable GA, and the biobased GAER/r-GO nanocomposites and glass fiber-reinforced composites were prepared with succinic anhydride as a curing agent. The dynamic mechanical, thermal, and mechanical properties of the composites with varying r-GO contents were characterized. When the content of r-GO was 0.5 wt%, the glass transition temperature was 10.4°C higher than the pure resin system. The thermal and mechanical properties were increased with increasing r-GO content; when the r-GO content was 1.0 wt%, the initial degradation temperature was enhanced by approximately 6.8°C, the tensile and impact strengths were 34.5% and 49.1% higher, respectively, than the pure cured GAER. The impact strength of GAER was higher than that of the bisphenol A epoxy resin/SUA curing system, but the tensile strength was lower than it.  相似文献   

7.
Graphene oxide (GO)/epoxy composites cured by aliphatic dibasic acids have been prepared. The influences of structure of aliphatic dibasic acid and loading of GO on curing process and mechanical properties of epoxy composites were studied. The results show that the reaction activities, gel time of corresponding epoxy-acid system and tensile strength of the formed epoxy resins decrease with the increase of the chain length of aliphatic dibasic acids. Both fracture toughness (>1.96 MPa⋅m1/2) and elongations at break (>6%) increase with the increase of the chain length of aliphatic dibasic acids. The introduction of GO is helpful to increase the mechanical properties and the gas transmission coefficient of GO/epoxy composites. A maximum of tensile strength and elongations at break were obtained when the loading of GO is 0.6 wt%. The gas transmission coefficient of GO/epoxy composite increases with the increase of GO loading. The excellent mechanical properties and gas leakage resistance coefficient of the formed epoxy composites provides potential application in many fields where conventional brittle epoxy resins are inapplicable.  相似文献   

8.
The aim of this study was to investigate physical and mechanical properties of graphene oxide (GO)/polyethersulfone (PES) nanocomposite films. The films were produced by solution casting method. The mechanical properties of composite films were evaluated by tensile test. A significant enhancement in the mechanical properties of neat PES films was obtained incorporating a small amount of GO loading (0.05–1 wt.%). The highest tensile strength was observed at 1 wt.% of GO. Comparisons were made between experimental data and the Halpin–Tsai model predictions for the tensile strength and modulus of GO/PES composites. The effect of an orientation factor on model predictions was also acquired. The hydrophilicity of the nanocomposite was evaluated by assessing contact angle and enhanced wet ability of the films was obtained with increasing the amount of GO up to 1%. The morphology of the nanocomposites was investigated using scanning electron microscopy and transmission electron microscopy and the results revealed a good dispersion of GO in the PES matrix. The thermal behavior of the composite was also studied. Thermal stability of composites was increased by adding the GO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Nowadays, most superhydrophobic surfaces will lose their superhydrophobic performance once they encounter oil, and adhesive strength of superhydrophobic coating is low. Therefore, the superhydrophobic coating with good oleophobicity and high adhesive strength is popular with people. A superhydrophobic and oleophobic coating is characteristic of antifouling and self-cleaning, due to the appearance of special structures, such as overhang and re-entrant. In this work, flower-like zinc oxide (ZnO) particles free of fluorine and fluorine-containing epoxy were used to establish the coating with a similar re-entrant structure. Flower-like ZnO particles were prepared by a chemical precipitation method, and the water contact angle of flower-like ZnO is up to 149 ± 1°. For the coating, flower-like ZnO particles were almost covered by fluorine-containing epoxy synthesized through click reaction so that the adhesive strength between the coating and the matrix is high, superior to some coatings in the references. The surfaces made of flower-like ZnO and fluorinated epoxy possess superhydrophobic and oleophobic properties. The contact angle of the coating for water, diiodomethane, glycerol, and glycol is 154 ± 0.7°, 138 ± 0.6°, 156 ± 0.7°, and 150 ± 0.7°, respectively. After withstanding 70 cycles under the pressure of 1 kPa, the coating is still superhydrophobic. Also, the coating possesses a good self-cleaning and anti-icing property.  相似文献   

10.
A non‐covalent functionalization based on a copper tetraphenylporphyrin/chemically reduced graphene oxide (Cu‐TPP/CRGO) nanocomposite is demonstrated for selective determination of dopamine (DA) in pharmaceutical and biological samples. A homogeneous electron‐rich environment can be created on the graphene surface by Cu‐TPP due to the π–π non‐covalent stacking interaction. The synthesized Cu‐TPP/CRGO nanocomposite was characterized using scanning electron microscopy NMR, ultraviolet–visible and electrochemical impedance spectroscopies. The electrocatalytic activity of DA was evaluated using cyclic voltammetry and differential pulse voltammetry. The oxidation peak current (Ipa) of DA increased linearly with increasing concentration of DA in the range 2–200 μM. The detection limit was calculated as 0.76 μM with a high sensitivity of 2.46 μA μM?1 cm ? 2. The practicality of the proposed DA sensor was evaluated in DA hydrochloride injection, human urine and saliva, and showed satisfactory recovery results for the detection of DA. In addition, the Cu‐TPP/CRGO nanocomposite‐modified electrode showed excellent stability, repeatability and reproducibility towards the detection of DA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Carbon nanotubes (CNTs) have been identified as excellent nanoreinforcements for carbon fiber (CF)–reinforced polymers regarding a wide range of engineering applications. The outstanding properties of CNTs, such as their large surface area, high mechanical strength, and low manufacturing cost bring them to be distinguished nanoreinforcements for carbon fiber–reinforced polymers to form multifunctional and multiscale composites. Electrophoretic deposition of graphene oxide for CNTs onto the CF surface was conducted. The presence of graphene oxide–CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the polyimide (PI).  相似文献   

12.
A new series of carbon-based films doped with graphene oxide and cobalt (G-Co/a-C:H films) were successfully prepared on Si substrate via one-step electrochemical deposition of methanol as the carbon source and graphene oxide/cobalt as the dopant. G-Co/a-C:H films were fabricated at various graphene oxide concentration for comparative experiments. It can be found that the graphene oxide and cobalt were well embedded in amorphous carbon matrix to form superhydrophobic G-Co/a-C:H film at the doping GO concentration of 0.007 mg/mL, which was confirmed by transmission electron microscopy (TEM). It was noted that the superhydrophobicity of the resulting surface derives from its rough surface with hierarchical micro-nanostructures and the presence of the low-surface-energy GO components on it. The hierarchical micro-nanostructures are attributed to the corporate joint of GO and cobalt to form the multilevel nanoscale composite interface. Specially, the as-fabricated superhydrophobic G-Co/a-C:H film could exhibit excellent self-cleaning ability and corrosion resistance, revealed by the self-cleaning and corrosion tests.  相似文献   

13.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon fiber/epoxy composite. The chemical structure of the functionalized GO (FGO) nanosheets was characterized by elemental analysis, FT-IR and XRD. Hand lay-up, as a simple method, was applied for 3-ply composite fabrication. In the sample preparation, the fiber-to-resin ratio of 40:60 (w:w) and fiber orientations of 0°, 90°, and 0° were used. The GO and FGO nanoparticles were first dispersed in the epoxy resin, and then the GO and FGO reinforced epoxy (GO- or FGO-epoxy) were directly introduced into the carbon fiber layers to improve the mechanical properties. The GO and FGO contents varied in the range of 0.1–0.5 wt%. Results showed that the mechanical properties, in terms of tensile and flexural properties, were mainly dependent on the type of GO functionalization followed by the percentage of modified GO. As a result, both the tensile and flexural strengths are effectively enhanced by the FGOs addition. The tensile and flexural moduli are also increased by the FGO filling in the epoxy resin due to the excellent elastic modulus of FGO. The optimal FGO content for effectively improving the overall composite mechanical performance was found to be 0.3 wt%. Scanning electron microscopy (SEM) revealed that the failure mechanism of carbon fibers pulled out from the epoxy matrix contributed to the enhancement of the mechanical performance of the epoxy. These results show that diamine FGOs can strengthen the interfacial bonding between the carbon fibers and the epoxy adhesive.  相似文献   

14.
Fe3O4 is considered as a promising electrode material for lithium-ion batteries(LIBs) due to its low cost and high theoretical capacity(928 mAh/g).Nevertheless,the huge volume expansion and poor conductivity seriously hamper its practical applications.In this study,we use a facile hydrothermal reaction together with a post heat treatment to construct the three-dimensional heterostructured composite(Fe3O4/rGO) inwhich reduced graphene oxide sheets wraped the Fe3O4 submicron cubes as the conductive network.The electric conduction and electrode kinetics of lithium ion insertion/extraction reaction of the composite is enhanced due to the assist of conductive rGO,and thus the Listorage performance is obviously improved.The composite exhibits a reversible charge capacity of772.1 mAh/g at the current density of 0.1 A/g,and the capacity retention reaches 70.3% after400 cycles at0.5 A/g,demonstrating obviously higher specific capacity and rate capability over the Fe3O4 submicron cubes without rGO,and much superior cycling stability to the parent Fe_2 O_3 submicron cubes without rGO.On the other hand,as a synergic conductive carbon support,the flexible rGO plays an important role in buffering the large volume change during the repeated discharge/charge cycling.  相似文献   

15.
Superhydrophobic cerium oxide film was introduced to aluminum substrate by an in‐situ growth process and surface modification. Different molar ratios between Ce(NO3)3 · 6H2O and C6H12N4 were involved in this research. The morphologies, chemical compositions and wetting properties of the films were analyzed by scanning electron microscopy (SEM), energy dispersive X‐ray detector, Fourier transfer infrared spectrometer and water contact angle (WCA) measurement, respectively. A great WCA of 158.8o with a low angle hysteresis of about 3o was obtained. Combination of uniform hierarchical micro‐nanostructure as revealed by SEM together with the hydrophobic alkyl groups from stearic acid was found to be responsible for the superior superhydrophobic property. The corrosion resistance performance of the superhydrophobic surface was evaluated by immersing in sodium chloride aqueous solution, the WCA kept as high as 152.1o after immersion for 21 days, indicating our superhydrophobic surfaces had high chemical stability and durability in corrosive medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
利用改进的Hummers法氧化鳞片石墨,获得富含羟基和羧基的氧化石墨烯量子点(GOQDs)。通过透射电子显微镜、X射线衍射、红外光谱及拉曼光谱测试表征其理化性质。此外,利用鸡卵清蛋白(OVA)作为模式抗原,构筑GOQDs/OVA纳米疫苗并评估其载量、安全性、免疫效力等。结果显示,GOQDs/OVA纳米疫苗直径在5nm左右,具有高度的水分散性和稳定性。其对OVA的最大负载量约为 500mg·g-1,在pH=5.5和7.4环境下24 h的释放率分别为74.65%和56.93%,表现出pH刺激响应释放性能。当GOQDs浓度在500μg·mL-1以下时,不会引起溶血、细胞损伤、重要组织发生病变等现象。免疫后,与 OVA单独免疫对照组相比,GOQDs/OVA纳米疫苗可以诱导产生高水平的免疫球蛋白G(IgG)、免疫球蛋白G1(IgG1)及免疫球蛋白G2a(IgG2a)抗体,提高白细胞介素(IL)-1β、IL-2、IL-4和IL-6、肿瘤坏死因子-α(TNF-α)和γ干扰素(IFN-γ)的分泌,同时促进脾中辅助性(CD4+)和细胞毒性(CD8+)T淋巴细胞百分比的增加。  相似文献   

17.
利用改进的Hummers法氧化鳞片石墨,获得富含羟基和羧基的氧化石墨烯量子点(GOQDs)。通过透射电子显微镜、X射线衍射、红外光谱及拉曼光谱测试表征其理化性质。此外,利用鸡卵清蛋白(OVA)作为模式抗原,构筑GOQDs/OVA纳米疫苗并评估其载量、安全性、免疫效力等。结果显示,GOQDs/OVA纳米疫苗直径在5 nm左右,具有高度的水分散性和稳定性。其对OVA的最大负载量约为500 mg·g-1,在pH=5.5和7.4环境下24 h的释放率分别为74.65%和56.93%,表现出pH刺激响应释放性能。当GOQDs浓度在500 μg·mL-1以下时,不会引起溶血、细胞损伤、重要组织发生病变等现象。免疫后,与OVA单独免疫对照组相比,GOQDs/OVA纳米疫苗可以诱导产生高水平的免疫球蛋白G(IgG)、免疫球蛋白G1(IgG1)及免疫球蛋白G2a(IgG2a)抗体,提高白细胞介素(IL)-1β、IL-2、IL-4和IL-6、肿瘤坏死因子-α(TNF-α)和γ干扰素(IFN-γ)的分泌,同时促进脾中辅助性(CD4+)和细胞毒性(CD8+)T淋巴细胞百分比的增加。  相似文献   

18.
This research aims to develop superhydrophilic fiberglass/epoxy nanocomposite (FGEC) laminates with high mechanical, thermal, and impact properties. In order to achieve this goal, functionalized graphene (FGA) was used as a nanofiller material to improve the mechanical, impact, and thermal behaviors of FGEC, while the plasma treatment helped to form the oxidized polar functional groups (C9O groups and C–O groups) on the fabricated FGEC laminates, thus modifying their hydrophilic behavior. The experiments were started with production of FGEC laminates by mixing FGA (0.05-0.4 wt%) with epoxy resin in presence of Acetone (to obtain better dispersion), followed by preparation of FGEC laminates using vacuum-assisted resin transfer and curing processes. Afterwards, the surfaces of the fabricated FGEC laminates were treated by air plasma at 13Pa and 30W for different treatment times in the range 5–30 min. Mechanical and impact properties of the untreated and treated laminates were investigated according to ASTM-D7025 and ISO 6603-2 standards, respectively. Also, thermal behavior of the laminates was investigated using a thermogravimetric analysis, while a high resolution camera was used to record and calculate a contact angle of the untreated and treated laminates. SEM and Optical Microscope was used to observe dispersion of FGA, microstructure, impact mechanism, and surface morphology of the fabricated FGEC matrix. Meanwhile, XPS was used to evaluate changes in the surface structures of the untreated and treated samples. The results showed that 0.35 wt% of FGA and 15-min exposure to plasma treatment were enough to improve tensile strength and impact energy of the laminates by 18% and 70%, respectively, and to decrease the water contact angle from 67° to 14°.  相似文献   

19.
Ultra‐high molecular weight polyethylene (UHMWPE)/graphene‐nanosheet (GN, multiple layers of graphene sheets with the thickness of ~5–10 nm) coatings have been deposited by flame spraying. The structure of UHMWPE remained almost intact after the spray processing and addition of GNs resulted in a slightly decreased crystallinity and improved thermal stability of UHMWPE. In addition, the coating containing 1.0 wt.% GNs exhibited a reduction of ~20% in wear rate and 25% in friction coefficient (0.18 versus 0.24). Significantly enhanced anti‐corrosion performances of the UHMWPE–GN coatings were suggested by increased corrosion potential, corrosion current density, and impedance modulus value of the UHMWPE–GN coatings. The very well retained GNs are located mainly at the interfaces between UHMWPE splats and act as bridges connecting the splats, which mainly accounts for the enhanced properties of the composite coatings. The novel UHMWPE–graphene composite coatings show great potential for protecting engineering components for applications against corrosion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m?1, compared with 20.3 S m?1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1545–1554  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号