首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan hydrogel beads were successfully prepared by the method of thermosensitive internal gelation technique. The prepared beads were spherical, smooth-surfaced and non-aggregated with a diameter of 1.7–2.1 mm. The diameters of beads can be controlled and have a correlation with the initial drop size, the concentration of CaCl2, alginate and the time of solidification. The bead is comprised of three parts, which are chitosan/glycerophosphate (CS/GP) hydrogel core, chitosan-alginate (CS/SA) gel layer in the middle and calcium-alginate gelatin capsules in outer layer. Swelling studies indicate that the beads can be stable in simulated gastric fluid. But the beads shrink sharply when removed to simulated intestinal fluid. Drug release behavior showed that release of ornidazole in the beads is much slower than in the CS/GP hydrogel.  相似文献   

2.
《先进技术聚合物》2018,29(2):884-895
In the present work, new matrix bead formulations based on linear and branched polysaccharides have been developed using an ionic gelation technique, and their potential use as oral drug carriers has been evaluated. Using calcium chloride as a cross‐linking agent and sodium diclofenac (SD), as a model drug, acacia gum–calcium alginate matrix beads were formulated. The response surface methodology based on 32 factorial design was used as a statistical method to evaluate and optimize the effects of the biopolymers‐blend ratio and the concentration of calcium chloride on the particle size (mm), density (g/cm3), drug encapsulation efficiency (%), and the cumulative drug release after 8 hours (R8h,%). The optimized beads with the highest drug encapsulation efficiency were examined for a drug‐excipients compatibility by powder X‐ray diffraction, differential scanning calorimetry, thermo‐gravimetric analysis, and Fourier transform‐infrared spectroscopy analyses. The swelling and degradation of the matrix beads were found to be influenced by the pH of medium. Higher degrees of swelling were observed in intestinal pH than in stomach pH. Accordingly, the drug release study showed that the amount of SD released from the acacia gum–calcium alginate beads was higher in intestinal pH than in stomach pH. Therefore, the in vitro drug release from the SD‐loaded beads appears to follow the controlled‐release (Hixson‐Crowell) pattern involving a case‐2 transport mechanism operated by swelling and relaxation of the polymeric blend matrix.  相似文献   

3.
Magnetic alginate beads are potential biosorbent for sorption of lanthanum(III) from an aqueous medium. Batch experiments were carried out to study the equilibrium, kinetics, and thermodynamics of lanthanum sorption. The effects of initial solution pH, initial lanthanum concentration, and temperature on lanthanum sorption were investigated. The optimum pH value was defined to be 4. Kinetic and isotherm experiments were carried out at the optimum pH. It was enough to reach the adsorption equilibrium at 4 hours, and the maximum uptake capacity was (1.8 mmol g?1) at 25°C. Uptake kinetics and sorption isotherms were obtained and modeled using conventional and simple equations: best results were respectively obtained with the pseudo-second-order rate equation and the Langmuir equation. The La(III) loaded magnetic alginate beads were regenerated using 0.1 M CaCl2 without activity loss.  相似文献   

4.
Nateglinide loaded alginate-chitosan beads were prepared by ionic gelation method for controlling the drug release by using various combinations of chitosan and Ca2+ as cation and alginate as anion. IR spectrometry, scanning electron microscopy, differential scanning calorimetry and X-ray powder diffractometry were used to investigate the physicochemical characteristics of the drug in the bead formulations. The calcium content in beads was determined by atomic absorption spectroscopy. The swelling ability of the beads in different media (pH 1.2, 4.5, 6.8) has been found to be dependent on the presence of polyelectrolyte complex of the beads and the pH of the media. The ability to release the Nateglinide was examined as a function of chitosan and calcium chloride content in the gelation medium. It is evident that the rate of drug release and its kinetics could be controlled by changing the chitosan and the calcium chloride concentrations. Calcium alginate beads released more than 95% of drug with in 8 h; whereas coated beads sustained the drug release and released only 75-80% of drug. The drug release mechanism analyzed indicates that the release follows either "anomalous transport" or "case-II transport".  相似文献   

5.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Layer-by-layer (LbL) alginate beads, which were prepared by multi-phase emulsion technique, had been fabricated via the ionic crosslinking between calcium ion (Ca2+) and the carboxylic group of alginate. The prepared beads were spherical, smooth-surfaced and non-aggregated. The SEM analysis displayed the LbL structure of the beads clearly. It had been demonstrated that the size of the beads was controllable and had a correlation with concentration of sodium alginate (SA) and CaCl2, ratio of water phase and oil phase (W/O), stirring speed, pH value of the water phase, viscosity of SA as well as the temperature for solidification. Stability studies showed that the beads degraded slowly in simulated gastric fluid and simulated intestinal fluid but degraded sharply when they were moved to simulated colonic fluid. Cytotoxicity study by MTT assay indicated that the prepared beads are slightly toxic. It is hoped that this kind of novel beads could be used in pharmaceutical area and cell culture area.  相似文献   

7.
麦饭石含量对载药复合凝胶小球释药性能的影响   总被引:1,自引:0,他引:1  
以瓜尔胶-g-聚丙烯酸/麦饭石复合水凝胶(GG-g-PAA/MS)和海藻酸钠(SA)为原料,双氯芬酸钠(DS)为模拟药物,采用离子凝胶法制备了载药复合凝胶小球,考察了pH敏感性以及MS含量对复合凝胶小球的包封率、载药率、溶胀性和药物释放行为的影响.结果表明:凝胶小球具有明显的pH敏感性,在不同pH介质中溶胀率和释放速率...  相似文献   

8.
Chitosan and sodium alginate have the opposite charges; they can become a gelatin by the electrostatic attraction, High-voltage electrostatic droplet generator method was used to prepare chitosan-sodium alginate microcapsule. Multi-layer chitosan-sodium alginate microcapsule was prepared through layer-by-layer self-assembly, and the morphology was investigated. In addition, the release property of ofloxacin in microcapsules was studied by UV-Vis microscopy under different conditions such as pH value, layer number, etc. The results showed that the prepared microcapsules have a smooth surface with average particle size about 100 μm. The result of controlled release indicated that the prepared microcapsules are pH-independent, and the rate of release decreased when the layer number increases.  相似文献   

9.
A series of thermoresponsive sodium alginate-g-poly(vinyl caprolactam) (NaAlg-g-PNVCL) beads were prepared as drug delivery matrices of 5-flurouracil (5-FU) crosslinked by glutaraldehyde (GA) in the hydrochloric acid catalyst. Graft copolymers of sodium alginate with vinyl caprolactam were synthesized using azobisisobutyronitrile as an initiator, and characterized by Fourier infrared spectroscopy, differential scanning calrimetry and X-ray diffraction for analysis of the amorphous nature drug in the beads, and by scanning electron microscopy for the spherical nature of the beads. Preparation condition of the beads was optimized by considering the percentage of encapsulation efficiency, swelling behavior of beads and their release data. Effects of variables such as GA concentration, drug/polymer ratio and catalyst concentration on the release of 5-FU were carried out at two different temperatures (25 and 37 °C) in simulated intestinal fluid for 12 h. It was observed that, drug release from the beads decreased with increasing drug/polymer (d/p) ratio, extent of crosslinking agent and catalyst concentration. The swelling degree of graft copolymer beads was found to be increased with decreasing of environmental temperature. In vitro release studies were performed at 25 and 37 °C for 12 h, and showed that thermoresponsive graft copolymer beads had higher drug release behavior at 25 °C than that at 37 °C, following Fickian diffusion transport mechanism with slight deviation.  相似文献   

10.

The dynamic release of drug propranolol HCl from the propranolol HCl–resin complex (PRC) loaded calcium alginate beads has been studied in the buffer media of pH 1.2 at the physiological temperature 37°C. The PRC encapsulated beads demonstrated nearly 58.04% release while naked PRC particles released 98.00% drug in 24 h in the gastric fluid. The amount of drug released was found to increase with and decrease in the amount of sodium alginate in the beads. Similarly, with the increase in the amount of entrapped PRC particles within the beads, the quantity of drug released was also observed to increase. The degree of crosslinking of beads also affected the release kinetics. Interestingly, the release from naked PRC particles followed ‘first‐order’ kinetics while PRC particles, entrapped in calcium–alginate beads, exhibited ‘diffusion controlled’ release behavior as indicated by liner nature of fractional release vs. √t plot.  相似文献   

11.
Food-grade hydrogel particles composed of sodium alginate were used to investigate the diffusion behavior of microbial transglutaminase (mTG) to induce crosslinking of interfacially adsorbed protein. For this purpose, mTG-loaded hydrogel beads were mixed with caseinate-stabilized oil-in-water emulsions, whereas Bradford assay and ammonia measurements were utilized to monitor the enzyme-induced interfacial protein crosslinking. Different alginate (0.5–1.5%) and gelling concentrations (50–500 mM CaCl2) were used to modulate the hydrogel mesh size and number of junction zones. The results indicated that mTG was able to diffuse out of alginate beads. However, a decrease in NH3 concentration with increasing alginate and CaCl2 levels was observed due to the formation of tight and dense bead structures. These results illustrate that the spatial distribution of molecules in complex matrices plays a key role on the enzyme accessibility  相似文献   

12.
Carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were successfully prepared by Ca2+ ions crosslinking followed by gamma irradiation. The factors affecting beads formation are the composition of SA in the blend and concentration of calcium chloride as a crosslinking agent. The results indicated that the addition of CMC to SA increases the swelling (%) upto (1:3) (CMC:SA) ratio. The effect of different irradiation doses (2.5, 5, and 10 kGy) on swelling (%) was studied. At low doses, swelling (%) decreases upto 5 kGy then starts to increase at 10 kGy. The degree of the swelling (%) and release (%) of ammonium nitrate salt from beads were investigated under different pH (1.2, 5 and 7). The beads were characterized by FTIR, SEM and TGA to investigate molecular structure, morphology and thermal stability of beads.  相似文献   

13.
Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (q max) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.  相似文献   

14.
The Ca-alginate/gelatin (CAG) microbeads were prepared and evaluated through assays for their mechanical strength, permeability, and the feasibility as a cell carrier for in vitro culture of neural stem cells. The effects of different concentrations of sodium alginate, gelatin, and calcium chloride on the mechanical strength of CAG microbeads were determined using a self-made puncture force tester. Following this, the microbeads were immersed in DMEM media for a specified period to test its decay resistance. A diffusion model including a calculation formula of diffusion coefficient was built to investigate the diffusion of glucose and bovine serum albumin (BSA) through the wall of the microbeads. Furthermore, the feasibility of the microbeads for in vitro culture was identified using neural stem cells from Kunming mouse. Through a systematic approach and comprehensive analysis, the optimal gelatin conditions for microbead preparation were determined; the final combination of parameters of 1.5 % (wt%) sodium alginate (SA), 0.5 % (wt%) gelatin, and 4 % (wt%) CaCl2 were the best conditions for NSC cultures. This experiment demonstrated that CAG microbeads had good cytocompatibility that made it suitable for the culture and successfully maintained stemness of neural stem cells.  相似文献   

15.
A series of polyurethane-alginate (APU/AG) compositions with pH/temperature-responsive character and regulated viscosity were obtained by adding different quantities of sodium alginate into an aqueous polyurethane anionic dispersion. Rheological, thermoresponsive, mechanical properties and swelling behavior dependencies on composition have been determined. APU/AG compositions reached equilibrium swelling and deswelling states within about 60 min. They display non-Newtonian flow and posses thixotropic properties. The strength of the films increases after their treatment with CaCl2 at the expense of cross-linking of alginate with divalent calcium ions and of forming an alginate network.  相似文献   

16.
In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitution degree of GA were analyzed by 1H NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 ± 11 nm. The drug release was shown to last 20 days, and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct killing effect on 7703 hepatocellular carcinoma cells.  相似文献   

17.
Salt-responsive monoolein (MO) cubic phase was prepared by in situ ionically gelling alginate contained in its water channels. On the TEM micrographs, bilayers, and water channels, characteristic of MO cubic phase were observed, and alginate and CaCl2 had little effect on the structure. According to the differential scanning calorimetric thermogram, the cubic-to-hexagonal phase transition temperature of the cubic phase containing CaCl2 solution was 46.8°C and it was much lower than that of the cubic phase containing distilled water, 60.5°C. The transition temperature was not significantly affected by alginate. The phase transition temperatures measured by the calorimetric analysis were in accordance with those determined by polarized optical microscopy. An initial burst release of dye (i.e., amaranth) was observed when the gelled alginate was not contained in the water channel of the cubic phase. A sustained release was obtained with the cubic phase containing the gelled alginate. The release of dye loaded in the cubic phase containing the gelled alginate was significantly promoted when the cubic phase came into contact with PBS (10?mM, pH 7.4), possibly because the multivalent cation (Ca2+) bound to alginate chains could be replaced by the monovalent cation (Na+).  相似文献   

18.
Films of alginate and gelatin, cross-linked with Ca2+, with ciprofloxacin hydrochloride as model drug incorporated in different concentrations, were obtained by a casting/solvent evaporation method. Chemical, morphological and mechanical properties characterization was carried out, as well as the studies of the factors that influence the drug releasing from alginate and gelatin films. These factors included the component ratio of alginate and gelatin, the loaded amount of ciprofloxacin hydrochloride, the pH and ionic strength of the release solution, the thickness of the drug loaded films and the cross-linking time with Ca2+ and others. The best values of the tensile strength at 101.5 MPa and breaking elongation at 19.4% of blend films were obtained when the gelatin content was 50 wt.%. The results of controlled release tests showed that the amount of ciprofloxacin hydrochloride released decreased with an increase in the proportion of gelatin present in the film. Moreover, the release rate of drug decreased as the amount of drug loaded in the film increased. The alginate/gelatin films were also sensitive to pH and ionic strength. For pH 7.4 the drug release was faster compared to pH 3.6, being simultaneously accelerated by a higher ionic strength. It was observed that in simulated intestinal fluid, the thickness of the film increased from 30 μm to 55 μm with a concomitant reduction of the ciprofloxacin hydrochloride concentration from 100% to 83.5%. When the cross-linking time of these films in the Ca2+ solution were 0 min, 5 min, 15 min and 30 min, the drug release rate attained 100%, 100%, 77.6% and 52.4%, respectively, within 24 h. All the results indicated that the alginate/gelatin film was potentially useful in drug delivery systems.  相似文献   

19.
Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1?25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).  相似文献   

20.
A novel injectable in situ gelling drug delivery system (DDS) consisting of biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanoparticles and thermosensitive chitosan/gelatin blend hydrogels was developed for prolonged and sustained controlled drug release. Four different HTCC nanoparticles, prepared based on ionic process of HTCC and oppositely charged molecules such as sodium tripolyphosphate, sodium alginate and carboxymethyl chitosan, were incorporated physically into thermosensitive chitosan/gelatin blend solutions to form the novel DDSs. Resulting DDSs interior morphology was evaluated by scanning electron microscopy. The effect of nanoparticles composition on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. Finally, bovine serum albumin (BSA), used as a model protein drug, was loaded into four different HTCC nanoparticles to examine and compare the effects of controlled release of these novel DDSs. The results showed that BSA could be sustained and released from these novel DDSs and the release rate was affected by the properties of nanoparticle: the slower BSA release rate was observed from DDS containing nanoparticles with a positive charge than with a negative charge. The described injectable drug delivery systems might have great potential application for local and sustained delivery of protein drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号