首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚羧酸共聚物侧链结构对水泥水化及硬化过程的影响   总被引:13,自引:0,他引:13  
以聚乙二醇系列、丙烯酸、顺酐、丙烯酸羟乙酯为原料合成聚羧酸减水剂,讨论聚羧酸共聚物侧链长度对水泥分散性能和水化过程的影响,并测试掺加减水剂的混凝土性能.实验结果表明:通过调整聚羧酸共聚物中侧链链长的比例使其具有最佳的分散性.实验合成的聚羧酸共聚物聚乙二醇侧链为nPEG600∶nPEG400=1∶1时,分散效果最好,水泥浆体的流动度及分散力最佳,分别为289 mm和10.36.聚羧酸减水剂具有缓凝特性,能够显著延缓水泥水化及硬化过程,使水泥石的后期水化更充分、水化产物结构更紧密更有力量,各龄期混凝土抗压强度都有较大提高.在水泥中添加0.3%聚羧酸减水剂(PEG600∶400),32.5#水泥3 d,7 d和28 d的抗压强度分别提高了50.4%,40.8%,35.1%,42.5#水泥3 d,7 d,28 d的抗压强度分别提高了16.7%,31.0%和22.3%.  相似文献   

2.
Abstract

This study elucidates the link between polycarboxylate (PC) architecture (random vs. block) and rheological properties of cement pastes at a low water-cement ratio (W/C?=?0.22) through a systematic investigation on the rheological properties, adsorption properties, solution viscosity and polymer hydrodynamic radius. Adsorption data show that the adsorption amount of the block PC is larger than that of the random PC while the paste flow is the same even though the dosage of the former is smaller, possibly owing to the fact that the adsorbing carboxylic groups are concentrated at one end in the case of the block PC, and the absence of neutral side chains in the adsorbing block effectively reduces the free energy barrier of PC adsorption. Results on the polymer hydrodynamic radius from dynamic light scattering (DLS) illustrate that the hydrodynamic radius of the block PC is smaller than that of the random PC, and in consistence with the DLS results, the solution of the block PC is also found to have a lower viscosity at the same polymer weight concentration. It is worth-noting that the apparent viscosity of the cement paste has a close relation with the viscosity of PC remaining in solution. The dual effects of a larger adsorption amount and a smaller hydrodynamic radius of the block PC effectively reduce the viscosity of PC remaining in solution, and hence effective reduce the apparent viscosity of cement pastes. It is believed that this study allows for a better understanding of the influences of polycarboxylate architecture on rheological properties of cementitious materials.  相似文献   

3.
For the tuning of conformation of polycarboxylate (PCE) superplasticizers, hydrophobic groups of different stiffness were incorporated, including styrene (St), methyl methacrylate (MMA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) units. The effect of these hydrophobic groups on the dispersing performance, adsorption process and, rheology of cement paste were investigated. Investigation on the solution conformation and adsorption layer thickness indicated the action mechanism of these groups. High backbone stiffness resulted in a lower extent of conformation condensation from pure aqueous solution to pore solution, and therefore more carboxylic groups could be accessible for adsorption. However, the conformation change after adsorption might also be limited and the size of single molecule after adsorption should be small. Hydrophobic groups always resulted in a coiled PCE conformation in salt solution, which indicated a lower adsorption affinity and thinner adsorption layer for these PCE molecules.  相似文献   

4.
In the model sulphoaluminate belite cement, the process of hydration is governed by the diffusion and transport phenomena of the main ionic species. The sulphate components and combined sulphate and aluminium ions, exert an accelerating effect upon the kinetics of sulphoaluminate belite cement hydration. Aluminium and calcium ions delay the hydration by creating a retarding layer which can be considered a co-precipitate of aluminium and calcium hydroxides. This is revealed in the calorimetric curves by the duration of induction period and also by the intensities of the main peaks. The appearance of small additional peaks characterizes the formation of primary ettringite, due to the presence of sulphate ions in aqueous solution. The intensities of these peaks depend on the ion concentration too.  相似文献   

5.
Investigations of the influence of different fly ashes on cement hydration   总被引:1,自引:0,他引:1  
Investigations of physico-chemical properties of three kinds of fly ash and their influence on cement hydration were performed in this work. Thermal analysis, microcalorimetry, infrared absorption and others were used. It was confirmed that the kind of coal and combustion conditions essentially influence physico-chemical properties of fly ash and in consequence influence cement hydration. Investigated fly ashes show in cement system so-called pozzolanic activity. Fly ash from combustion of brown coal in fluidized furnace revealed better activity compared to other investigated ones. This work is an introduction to more extensive investigation of fly ash activation.  相似文献   

6.
This research provides a fundamental understanding of the early stage hydration of Portland cement paste, tricalcium aluminate (C3A) paste at water to cement ratio of 0.5 and C3A suspension at water to cement ratio of 5.0 modified by 2 or 4 mass% of sodium carbonate. A high conversion of unreacted clinker minerals to gel-like hydration products in the cement-Na2CO3 pastes takes place rapidly between 1st to 24th h. Contrary the Ca(OH)2 formation within the same time interval is retarded in the excess of CO32− ions due to intensive rise and growth of CaCO3 crystals in hydrated cement. Later, the conversion of clinker minerals to the hydrate phase is reduced and higher contents of calcite and vaterite relative to that of Ca(OH)2 in comparison with those found in the Portland cement paste are observed. As a consequence a decrease in strength and an increase in porosity between hardened Portland cement paste without sodium carbonate and those modified by Na2CO3 are observed. C3A hydrates very quickly with sodium carbonate between 1st and 24th h forming hydration products rich in bound water and characterized also by complex salts of (x)C3A·(y)CO2·(zH2O type, whereas C3A-H2O system offers C3AH6 as the main hydration product. Higher content of the formed calcium aluminate hydrates in C3A-Na2CO3-H2O system also contributes to early strength increase of Portland cement paste.  相似文献   

7.
The cement industry is one which most emits polluting gases to the environment, due to the calcium carbonate calcination, as well as to the burning of fossil fuels during the manufacturing process. Metakaolin (MK), in partial substitution to cement in its applications, is having a special worldwide growing role, for the technological increment due to its pozzolanic activity and mainly to the reduction of those emissions. In the present paper, the effect of pozzolanic activity of metakaolin was analyzed by thermal analysis in pastes and mortars of type II Portland cement in the first three days of the hydration, during which, relevant initial stages of the hydration process occur. By non-conventional differential thermal analysis (NCDTA), paste and mortar samples containing 0, 10, 20, 30 and 40% of metakaolin in cement mass substitution and using a 0.5 water/(total solids) mass ratio, were evaluated. The NCDTA curves, after normalization on cement mass basis and considering the heat capacity of each reactant, indicate that the pozzolanic activity behavior of metakaolin is different in pastes and mortars. Through the deconvolution of the normalized NCDTA curve peaks, it can be seen that ettringuite formation increases as cement substitution degree (CSD) increases, in both cases. Tobermorite formation is more enhanced in mortars than in pastes by MK, with a maximum formation at 30% of CSD. In the pastes, tobermorite formation increases as CSD increases but it is practically the same at 30 and 40% of CSD.  相似文献   

8.
Setting cement: highly dynamic hydration processes that occur during the first seconds of cement hydration were studied by time-resolved synchrotron X-ray diffraction. Polycarboxylate ether additives were found to influence the formation of the initial crystalline hydration products on a molecular level.  相似文献   

9.
Hydrogels manufactured by radio-induced crosslinking and simultaneous sterilisation of hydrogels of PVP, PEG and agar, according to the Rosiak method, have many desirable properties for using as wound dressings. However, some properties need to be improved or better controlled. The membranes need to be strong enough to be freely used. Another important property to be controlled is the capacity of absorption of exudate and the kinetics of drying. Therefore, it was necessary to understand the role of main parameters (agar, PVP, PEG concentration and dose) in the structure of the net and in the hydration and dehydration properties. The structure of the membranes was studied by sol analysis and the hydrating/dehydrating properties were studied by isothermal thermogravimetric analysis. The gel content for all samples were always in agreement with expected values considering that only PVP undergoes crosslinking. The hydrating and dehydration results did not show variation with the tested parameters. It was concluded that the network was solely composed of crosslinked PVP plasticezed by the other compounds. The properties of hydration/dehydration is related rather to diffusion than to capillarity or osmose and to the chemical retention of water in the polymeric matrix.  相似文献   

10.
阿托伐他汀钙与β-环糊精相互作用的研究及应用   总被引:4,自引:1,他引:4  
采用线性扫描伏安法和循环伏安法并结合紫外分光光度法研究了新型抗血脂紊乱药物阿托伐他汀钙(AC)与β-环糊精(-βCD)的相互作用.探讨了-βCD对AC的峰电流及AC对-βCD吸附峰电流的影响,测得在0.06mol/LKH2PO4-Na2HPO4(pH=7.17)缓冲溶液中,AC与-βCD包结比为1:1,用电流法测得包结物的形成常数为9.09×104L/mol.根据碱性介质条件下β-CD分子与AC形成包结物而使β-CD吸附峰电流减小的特性,建立了一种利用β-CD间接测定AC的伏安方法.  相似文献   

11.
Partially exfoliated nanocomposite(2) has been synthesized by intercalation of poly(propylene carbonate)(PPC) into commercial clay,Cloisite 20B(PPC/C-20B).Nanocomposite 2 was characterized phiso-chemically and exhibited high thermal,mechanical and anti-water sorption properties as compared to PPC and intercalated nanocomposite(1) of PPC/C-20B having same amount of clay.TGA results revealed that the thermal decomposition temperature(Td,50%) of 2 increased significantly,being 40 K and 17 K higher than that of pure PPC and 1,respectively,while DSC measurements indicated that the nano-filler dispersion of 2 increased the glass transition temperature from 21℃to 31℃.Accordingly,2 showed high elastic modulus,hardness and anti-water absorption capacity.These thermal,mechanical and anti-water absorption improvements are of great importance for the application of PPC as packaging and biomaterials.  相似文献   

12.
Abstract

In the study, CD-g-HPGs with various arm length and arm number were synthesized and characterized by 1H NMR, 13C NMR and Gel Permeation Chromatographic (GPC). Phenolphthalein (PP), as a small hydrophobic guest was readily encapsulated in the cavity of β-CDs or the hydrophobic aggregation domains stacked by cavities of β-CDs. CD-g-HPGs bearing longer arm length and denser arm number exhibited an increased loading capacity and exerted a profound influence on the release behavior, that is, longer arm accelerated the release, while a higher density of arm number slowed down the release owing to the synergy effect of aggregation and host-guest interaction between β-CD and PP. Via adjusting the host-guest interaction, CD-g-HPGs provided a potential to design efficient carriers or reasonable assemble systems.  相似文献   

13.
The heats of dissolution of tetramethyl-bis-carbamide (the pharmaceutical Mebicarum) in H2O and D2O were measured at 288.15, 298.15, and 318.15 K using a sealed microcalorimeter with an isothermal shell. The error of measurements did not exceed 0.2%. The limiting molar enthalpies of dissolution Δsol H n and the H/D-isotope enthalpy effects of hydration δΔhydr H n (H2O → D2O) were determined. Different effects of temperature on the pattern of variation of δΔ hydr H n were found: when T ≤ 315 K, this value is positive and decreases with T, while for T ≥ 315 K, hydration of tetramethyl-bis-carbamide upon replacement of H2O by D2O progressively becomes less endothermic. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 715–717, April, 2006.  相似文献   

14.
The 3-hydroxy group of one glucopyranosinic ring of γ-cyclodextrin was selectively substituted with an amino moiety to obtain a new compound able to complex copper(II). Indeed, the new ligand, an altro-γ-CD, forms stable complexes with Cu(II), as the analogous 3-amino derivative β-CD previously exploited for the chiral separation of some amino acids by ligand exchange mechanism in capillary electrophoresis. Furthermore, the ligand forms a stable inclusion complex with anthraquinone-2-sulfonate.  相似文献   

15.
Layered double hydroxides (LDHs) are interesting materials for nanocomposite formation because one can vary the identity of the metals, the anions and the stoichiometry to see the effect of these on the ability of the nano-material to disperse in a polymer and to see what effect dispersion has on the properties of the polymer. In this study, the anions 2-ethylhexyl sulfate (SEHS), bis(2-ethylhexyl) phosphate (HDEHP) and dodecyl benzenesulfonate (SDBS) have been utilized as the charge balancing anions to synthesize organo-LDHs. Nanocomposites of poly(methyl methacrylate) (PMMA) and polystyrene (PS) with organo-LDHs were prepared both by melt blending and bulk polymerization. X-ray diffraction and transmission electron microscopy were used to characterize the morphology of the nanocomposites while the thermal stability and fire properties of nanocomposites were studied by thermogravimetric analysis and cone calorimetry; the mechanical properties are also investigated. In general, it is easier to disperse these organo-LDHs in PMMA than in PS, but the sulfate cannot be dispersed at the nanometer level in either material. The addition of these organo-LDHs does not affect the mechanical properties. The best fire properties are obtained with the sulfonate LDH, SDBS; the reduction in the peak heat release rate is almost 50% for both polymers.  相似文献   

16.
Polyurethane-poly(2,2,2-trifluoroethyl methacrylate) (PU-PTFEMA) triblock copolymer aqueous dispersions were synthesized by three-step polymerization. In the first step, polyurethane prepolymers (PU) based on 2,4-toluene diisocyanate (TDI), polyether binary alcohol (N220), α,α-dimethylol propionic acid (DMPA), hydroxypropyl acrylic acid (HPA), and butanediol (BDO) were prepared with butanediol as the chain extender and methylethylketon as solvent. The next step involved neutralization and dispersion in water, where prepolymers were neutralised by the addition of triethylamine (TEA). The last step was the seeded emulsion polymerization, where PU emulsion was used as seed, kalium persulfate (KPS) as initiator and 2,2,2-trifluoroethyl methacrylate (TFEMA) as comonomer. Factors influencing the synthesis of PU-PTFEMA copolymer aqueous dispersion were studied. Experimental data indicate that factors influencing the synthesis of PU-PTFEMA copolymer aqueous dispersion mainly involve reaction temperature, reaction time, the concentration of initiator, DMPA content, TFEMA content. Rotational viscometer and dynamic light scattering (DLS) were used to characterize the properties of copolymer aqueous dispersion.  相似文献   

17.
In this study a series of multi-walled carbon nanotube (MWCNT)/Polyethylene (PE) composites with different kinds and several concentrations of carbon nanotubes (CNTs) were investigated. The morphology and degree of dispersion of the fillers in the polymer matrix at different length scales was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both individual and agglomerated MWCNTs were evident but a good dispersion was observed for some of them. TGA measurements were performed on nanocomposites in order to understand if CNTs affect the stabilization mechanism during thermal and oxidative degradation. The analysis demonstrates that MWCNTs presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. In contrast, thermal oxidative degradation in air is delayed up to about 100 °C dependently from MWCNTs concentration, in the range used here (0.1-2.0 wt%), and degree of dispersion. The stabilization is due to the formation of a thin protective layer of entangled MWCNTs kept together by carbon char generated on the surface of the nanocomposites as shown by SEM images taken on degradation residues.  相似文献   

18.
Divinylbenzene‐maleic anhydride copolymer hollow microspheres (DMs) were used as novel organic nucleating agents to promote crystallization of poly(l‐lactide acid) (PLLA). The effects of these DMs on crystal behaviors of the PLLA were investigated by differential scanning calorimeter (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WAXD). Both isothermal and non‐isothermal processes in DSC demonstrated that the DMs significantly altered the crystal behaviors of PLLA as both crystallization velocity and degree of crystallinity increased with increasing DM loadings from 0 to 3%. Our POM results also indicated that as nucleating agents, the DMs promoted nucleating densities and decreased spherulitic sizes. In addition, WAXD suggeted that the addition of DMs did not induce new types of crystals. Finally, our results showed that the ductility of the PLLA was enhanced by a small amount of DMs during the PLLA crystallization process since 0.5% DMs added to the PLLA resulted in 1.4‐fold increase in the elongation at break in comparision with the neat PLLA.  相似文献   

19.
Poly(2-hydroxyethyl methacrylate) particles in the micron size range were obtained by the dispersion polymerization. Cellulose acetate butyrate and dibenzoyl peroxide were used as steric stabilizer and initiator, respectively. The ultimate particle size could be adjusted by the selection of a suitable polymerization medium consisting of an alcohol added to toluene and by varying their relative amounts. The particle size increased with increasing solubility parameter of the mixture, i.e., by decreasing the toluene/2-methylpropan-1-ol, toluene/butan-2-ol, and toluene/3-methylbutan-1-ol ratio. The particle size decreased with increasing concentration of the stabilizer and/or initiator. At the same time, the particle size distribution became narrower. Particles prepared from polymerization mixtures purged with nitrogen before the start of polymerization were smaller, and of narrower distribution, than those prepared from nitrogen-non-purged mixtures. Equilibrium swelling of particles in toluene decreased with the decreasing content of toluene in the polymerization mixture. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3785–3792, 1999  相似文献   

20.
Thermal phenomena at the hydration of calcium sulphate hemihydrate (CaSO4·0.5H2O) are investigated in the paper. Time development of hydration heat of β-calcium sulphate hemihydrate prepared from flue gas desulphurization (FGD) gypsum is determined using two different types of calorimeter, namely the differential calorimeter DIK 04 and the isothermal heat flow calorimeter KC 01, and the differences in measured data analyzed. Then, the effects of plasticizers and hydrophobizers on the hydration process of analyzed gypsum mixtures are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号