首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-defined four-arm star poly(?-caprolactone)-block-poly(cyclic carbonate methacrylate) (PCL-b-PCCMA) copolymers were synthesized by combining ring-opening polymerization (ROP) with atom transfer radical polymerization (ATRP). First, a four-arm poly(?-caprolactone) (PCL) macroinitiator [(PCL-Br)4] was prepared by the ROP of ?-CL catalyzed by stannous octoate at 110°C in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2-bromoisobutyryl bromide. The sequential ATRP of CCMA monomer was carried out by using the (PCL-Br)4 tetrafunctional macroinitiator (MI) and in the presence of CuBr/2, 2′-bipyridyl system in DMF at 80°C with [(MI)]:[CuBr]:[bipyridyl] = 1:1:3 to yield block polymers with controlled molecular weights (Mn (NMR) = 10700 to 27300 g/mol) by varying block lengths and with moderately narrow polydispersities (Mw/Mn = 1.2–1.4). Block copolymers with different PCL: PCCMA copolymer composition such as 50:50, 70:30 and 74:26 were prepared with good yields (48-74%). All these block copolymers were well characterized by NMR, FTIR and GPC and tested their thermal properties by DSC and TGA.  相似文献   

2.
Different amounts of glycidyl methacrylate (GMA) were grafted onto corn starch dispersed in water or dimethyl sulfoxide (DMSO) to yield starch-graft-poly(glycidyl methacrylate) (ST-g-PGMA). ST-g-PGMAW, obtained by grafting PGMA onto corn starch that was dispersed in water, showed a higher PGMA grafting content and a lower content of the homopolymerized PGMA than ST-g-PGMAD, which was prepared in DMSO. The modified starches were blended with poly(ϵ-caprolactone) (PCL) and nylon 610, respectively, and the tensile properties of the blends were measured by UTM. Mechanical properties of the biodegradable ST-g-PGMA/PCL blends were dependent on the PGMAD content grafted on starch. Without dramatic loss of the tensile properties of PCL, ST-g-PGMAW was melt blended with PCL. Meanwhile, an increase in the tensile modulus was observed in the ST-g-PGMAW/nylon 610 blend. When nylon 610 was reacted with ST-g-PGMAW in DMSO in the presence of triethylamine, the tensile modulus and strength were much higher than those of the pure nylon 610, and phase-separated domains of starch were not observed microscopically.  相似文献   

3.
The morphology, crystallization and self nucleation behavior of double crystalline diblock copolymers of poly(p-dioxanone) (PPDX) and poly(ϵ-caprolactone) (PCL) with different compositions have been studied by different techniques, including optical microscopy (OM), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The two blocks crystallize in a single coincident exotherm when cooled from the melt. The self-nucleation technique is able to separate into two exotherms the crystallization of each block. We have gathered evidences indicating that the PPDX block can nucleate the PCL block within the copolymers regardless of the composition. This effect is responsible for the lack of homogeneous nucleation or fractionated crystallization of the PCL block even when it constitutes a minor phase within the copolymer (25% or less). Nevertheless, we were able to show that decreasing amounts of PCL within the diblock copolymer still produces confinement effects that retard the crystallization kinetics of the PCL component and decrease the Avrami index. On the other hand evidence for confinement was also obtained for the PPDX block, since as its content is reduced within the copolymer, a depression in its self-nucleation and annealing temperatures were observed.  相似文献   

4.
IntroductionBlockcopolymerizationsofolefinwithacrylateshavearousedmoreandmoreatentionssincetheseprocessesendowpolymericmateri...  相似文献   

5.
A series of multi-block copolymers, poly(L-lactide)-b-poly (?-caprolactone) (PLLA-b-PCL) were synthesized. The first step of the synthesis consisted of the transesterification between the PLLA and 1,4-Butanediol, followed by the copolymerization of PLLA-diols and PCL, using isophorone diisocyanate (IPDI) as a coupling agent. The synthesized polymers were characterized by Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). PLLA/PCL block copolymers were electrospun into ultrafine fibers. The morphology of the electrospun fibrous scaffolds were investigated by Scanning Electron Microscopy (SEM). Results showed that the morphology and diameter of the fibers were affected by the electrospinning solution concentrationan and different weight ratio of PLLA/PCL. These electrospun PLLA-b-PCL fibrous membranes exhibited good flexibility and deformability. In comparison with the electrospun PLLA membrane, the electrospun fibrous membranes of PLLA-b-PCL demonstrated an enhanced elongation with still high tensile strength and Young's modulus to be beneficial for tissue engineering scaffolds.  相似文献   

6.
Biodegradation of blends of poly(ϵ-caprolactone) [PCL] with poly(vinyl butyral) [PVB] was studied in the soil and by bacterial strains of Bacillus subtilis and Escherichia Coli isolated from the soil. Miscibility of the blends was also analyzed using FT-IR and optical microscopy at room temperature. Biodegradation of the blends was followed by weight loss, visual observations and scanning electron microscopy [SEM]. Blends with low polyester concentration, i.e., 30 wt% PCL and less, were clear and transparent and no spherulite formation was observed. Above 30 wt% PCL spherulites appeared, the size of which increased with increasing PCL concentration. Infra-red studies of the blends with less than 30 wt% PCL showed that only the amorphous phase of PCL was present. Above 30 wt% PCL indicated the presence of both crystalline and blended PCL. The second derivative of the carbonyl peak of PCL also supported the presence of two phases in blends with more than 30 wt% PCL and only one peak for blends with 30 wt% or less PCL. Weight loss was observed in all the blends. PCL rich blends showed more degradation, which was faster in the natural environment than in the laboratory. Physical appearance and microscopic examination showed the films deteriorated in soil. Blends in the Bacillus subtilis strain showed more degradation as compared to the E. Coli. strain.  相似文献   

7.
8.
Amphiphilic biodegradable (PCL-PEG-PCL) triblock copolymers have been successfully prepared by the ring opening polymerization of ?-caprolactone (CL) in the presence of poly(ethylene glycol) (PEG) at 80°C employing Maghnite-H+ a non-toxic Montmorillonite clay as catalyst. Maghnite-H+ reacts as a solid source of protons to induce ?-caprolactone polymerization. The triblock architecture, molecular weight and thermal properties of the copolymers were characterized by NMR spectra, GPC and DSC analyses. The effect of Maghnite-H+ proportion and PEGs on the rate of copolymerization and on average molecular weight of resulting copolymers was studied. A cationic mechanism for the copolymerization reaction was proposed.  相似文献   

9.
A selenium-functionalizedε-caprolactone was synthesized by introducing a phenyl selenide group at the 7-position.A polymer was obtained through the ring-opening polymerization of this monomer in a base/thiourea binary organocatalytic system.A living polymerization process was achieved under mild conditions.The resulting polymers had a controlled molecular weight with a narrow molecular weight distributions and high end-group fidelity.Random copolymers could be obtained by copolymerizing this monomer withε-caprolactone.The thermal degradation temperature of the obtained copolymers decreased with the increasing molar ratio of selenide functionalized monomer in copolymers,while the glass transition temperature increased.In addition,the phenyl selenide side group could be further modified to a polyselenonium salt,which resulted in a polymer with good antibacterial properties.The survival rate of E.coli and S.aureus was only 9%with a polymer concentration of 62.5μg/mL.  相似文献   

10.
Raman spectroscopic measurements on aqueous solutions of poly(dG) · poly(dC)indicate that the conformation of the polynucleotides in this double helicalcomplex are distributed between the A and B types at room temperature, the Aform being predominant at –15°C and decreasing progressively upon raising thetemperature to 65°C. A reversible pretransition has been found in this complexnear 70°C. Modifications in the spectra at this temperature indicate no majorconformational changes, but rather suggest altered base pairing and hydration ofthe carbonyl groups, accompanied by a slight distortion of the double helix,resulting in a slightly reduced stacking of the cytosine bases. Measurements inself-pressurized solutions of the complex at high temperature show that it meltsat 103°C in 0.1M NaCl solution (107°C in 0.5M NaCl). These values are somewhatlower than those we have determined in the same manner for the complexpoly(dG-dC) · poly(dG-dC): 117°C in 0.1M MgCl2 and 113°C or higher in 0.1MNaCl solution.  相似文献   

11.
Newly designed star‐shaped block copolymers made of poly(?‐caprolactone) (PCL) and polystyrene (PS) were synthesized by combining ring‐opening polymerization (ROP) of ?‐caprolactone (CL) and atom transfer radical polymerization (ATRP) of styrene (St). The switch from the first to the second mechanism was obtained by selective transformation of “living” radical sites. First, tri‐ and tetrafunctional initiators were used as an initiator for the “living” ring opening polymerization (ROP) of ?‐caprolactone producing a hydroxyl terminated three or four arm star‐shaped polymer. Next, the OH end groups of PCL star branches were derivatized into 2‐bromoisobutyrate groups which gave rise to the corresponding tri‐ and tetrabromoester ended‐PCL stars; the latter served as macroinitiators for the ATRP of styrene at 110°C in the presence of CuBr/2,2‐bipyridine (Bipy) catalyst system affording star‐shaped block copolymers PCLn‐b‐PSn (n=3 or 4). The samples obtained were characterizated by 1H‐NMR spectroscopy and GPC (gel permeation chromatograph). These copolymers exhibited the expected structure. The crystallization of star‐shaped block copolymers was studied by DSC (differential scanning calorimetry). The results show that when the content of the PS block increased, the Tm of the star‐shaped block copolymer decreased.  相似文献   

12.
In order to synthesize block copolymers consisting of segments having dissimilar properties, vinyl polymer - poly (α-amino acid) block copolymers were synthesized by two different methods. In the first method, the terminal amino groups of polysarcosine, poly(γ-benzyl L-glutamate), and poly(γ-benzyloxycarbonyl-L-lysine) were haloacetylated. The mixture of the terminally haloacetylated poly (α-amino acid) and styrene or methyl methacrylate was photoirradiated in the presence of Mo (CO)6 or heated with Mo(CO)6, yielding A-B-A-type block copolymers consisting of poly(α-amino cid) (the A component) and vinyl polymer(the B component). The characterization of block copolymers revealed that the thermally initiated polymerization of vinyl compounds by the trichloroacetyl poly(α-amino acid)/Mo(CO)6 system was most suitable for the synthesis of vinyl polymer - poly-(α-amino acid) block copolymers. In the second method, poly (methyl methacrylate) and polystyrene having a terminal amino group were synthesized by the radical polymerization in the presence of 2-mercaptoethylammonium chloride. Using these polymers having a terminal amino group as an initiator, the block polymerizations of γ-benzyl L-glutamate NCA and e-benzyloxycarbonyl-L-lysine NCA were carried out, yielding A-B-type block copolymer. By eliminating the protecting groups of the side chains of poly(α-amino acid) segment, block copolymers such as poly(methyl methacrylate) with poly(L-glutamic acid) or poly(L-lysine) and polystyrene with poly(L-glutamic acid) and poly(L-lysine) were successfully synthesized.  相似文献   

13.
Abstract

A novel zwitterionic surfactant monomer containing a carboxybetaine moiety and a 10 carbon aliphatic tail was synthesized and copolymerized with acrylamide to yield a water‐soluble, hydrophobically modified zwitterionic polymer [Poly(acrylamide‐co‐(3‐(N,N‐dimethyl‐N‐3′‐(N′‐acryloyl)aza‐tridecyl) ammonio butanoate))]. The response of aqueous polymer solutions to the addition of various classes of surfactant was investigated and compared to that of an analogous novel polymer containing the sulfobetaine zwitterion [Poly(acrylamide‐co‐(N,N‐dimethyl‐N‐3′‐(N′‐acryloyl) aza‐tridecyl) ammonio propane sulfonate))]. It was found that the addition of sodium dodecyl sulfate (SDS) produced a pronounced maximum in viscosity, while dodecyltrimethylammoniumbromide (DTAB), N‐dodecyl‐N,N‐dimethylammonio‐1‐propanesulfonate (SB3‐12), and Triton X‐100 either had no effect, or produced a decrease in viscosity. The effect of pH on polymer–SDS interaction was also studied. Lowering pH increased the SDS–polymer interaction and significantly shifted viscosity enhancement to a higher SDS concentration.  相似文献   

14.
Poly(2-hydroxyethoxybenzoate), poly(ε-caprolactone), and random poly(2-hydroxyethoxybenzoate/e-caprolactone) copolymers were synthesized and characterized in terms of chemical structure and molecular mass. The thermal behavior was examined by DSC. All the samples appear as semicrystalline materials; the main effect of copolymerization was lowering in the amount of crystallinity and a decrease of melting temperature with respect to homopolymers. Flory's equation described well the T m-composition data. Amorphous samples (in the 20–100%2-hydroxyethoxybenzoate unit concentration range) obtained by quenching showed amonotonic decrease of the glass transition temperature T g as the content of caprolactone units is increased. The Wood's equation described the T g-composition data well. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.

Multi‐block copolymers of PLLA and PCL were prepared by a coupling reaction between PLLA and PCL prepolymers with –NCO end groups. FTIR proved that the products were PLLA‐PCL copolymers. The weight‐average molecular weight of the copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL. The degradation properties of PLLA and PLLA‐PCL copolymers were studied by a soil burial test and a hydrolysis test in a phosphate‐buffer solution. The degradation rate was estimated by the mass loss, molecular weight reduction, pH value changes and swelling index; the degradation rates of the copolymers were a function of the composition of PLLA and PCL. Increasing PCL content in the copolymers resulted in lower degradation rate.  相似文献   

16.
Poly(ethylene oxide) (PEO) with dithiocarbamate chain ends (PEO–SC(=S)−N(CH3)Ph and PEO–SC(=S)−NPh2, named PEO-1 and PEO-2 , respectively) were used as macromolecular chain-transfer agents (macro-CTAs) to mediate the reversible addition–fragmentation chain transfer (RAFT) polymerization of ethylene in dimethyl carbonate (DMC) under relatively mild conditions (80 °C, 80 bar). While only a slow consumption of PEO-1 was observed, the rapid consumption of PEO-2 led to a clean chain extension and the formation of a polyethylene (PE) segment. Upon polymerization, the resulting block copolymers PEO-b-PE self-assembled into nanometric objects according to a polymerization-induced self-assembly (PISA).  相似文献   

17.

Acrylamide (AAm) was found to polymerize in a solution of poly(N‐isopropylacrylamide) (PNIPAAm) in water at around its lower critical solution temperature (LCST) (32°C) without any initiators. This phenomenon was specifically observed in aqueous solutions of the polymers having LCST such as PNIPAAm and poly(methylvinylether) (PMVE). AAm polymerized only when PNIPAAm and AAm were dissolved in water below LCST of PNIPAAm and then the solution was warmed up to the polymerization temperature (40°C). On the other hand, the polymerization of AAm did not proceed when AAm was added into aqueous PNIPAAm solution during and after the phase separation above 32°C. Furthermore the polymerizability of AAm was remarkably affected by the concentration and molecular weight of the PNIPAAm additives. Under the condition of lower PNIPAAm concentration (0.30 mol/L), the increase in the molecular weight of PNIPAAm considerably increased the molecular weight of the resulting PAAm but decreased the yield of PAAm. Under the condition of higher PNIPAAm concentration (0.60 mol/L) the polymerizability was not so affected by the molecular weight of PNIPAAm, while the molecular weight of PAAm formed by using higher molecular weight PNIPAAm was higher than those of PAAm formed by using lower molecular weight PNIPAAm. Moreover, the molecular weight of PAAm formed by the PNIPAAm induced polymerization of AAm was much higher than that of the polymer obtained by the radical polymerization using AIBN in THF or VA‐ 061 in water.  相似文献   

18.
A series of mixed, random cylindrical brush copolymers bearing polystyrene(PS) and poly(ε-caprolactone)(PCL) side chains were synthesized via the combination of ring-opening polymerization(ROP) and atom transfer radical polymerization(ATRP). These novel cylindrical brush copolymers have been characterized by means of nuclear magnetic resonance(NMR) spectroscopy, gel permeation chromatography(GPC) and differential scanning calorimetry(DSC). It was found that the mikto-armed cylindrical brush copolymers were microphase-separated in bulks and that the morphologies were dependent on the mass ratios of PS to PCL side chains. One of the cylindrical brush copolymers was employed to incorporate into epoxy thermoset to investigate effect of the mikto-armed cylindrical brush architecture on the reaction-induced microphase separation behavior. Depending on the concentration of the cylindrical brush in epoxy, the thermosets can display the morphologies with the spherical, worm-like and lamellar PS microdomains dispersing in continuous thermosetting matrices.  相似文献   

19.
Poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) (PCL-b-PVCL) block copolymers were synthesized as new biocompatible, thermosensitive, amphiphilic block polymers by a combination of ring-opening polymerization and reversible addition–fragmentation chain transfer (RAFT) polymerization, and their thermosensitive micellar behavior was examined. The PCL macro-chain-transfer agent was first synthesized by converting the end group of PCL-OH to O-ethyl xanthate, which was subsequently used for the RAFT polymerization of N-vinylcaprolactam. The critical micelle concentration of PCL-b-PVCL (M n,NMR?=?56,300?g/mol, polydispersity index?=?1.18) was 0.026?mg/mL. The mean diameter of the PCL-b-PVCL micelles determined by transmission electron microscopy was 55?±?25?nm. The PCL-b-PVCL micelles exhibited repetitive aggregation and dispersion during reversible cooling and heating cycles between 20 and 40?°C due to the thermosensitive behavior of the PVCL shell. Overall, the PCL-b-PVCL block copolymers have potential applications in thermosensitive drug delivery applications.  相似文献   

20.
The reaction system of diperoxooxalatovanadate {K_3 [VO (O_2)_2-(C_2O_4)]·H_2O, bpV(Oxa)} and imidazole was studied in anaqueous solution by 1D multinuclear (~1H, ~(13)C and ~(51)V) NMR,2D NMR diffusion ordered spectroscopy (DOSY), and variabletemperature NMR techniques. It was shown that DOSY was auseful tool for the study of a mixture. All of the ~1H and ~(13)CNMR signals of the peroxovanadate (V) complexes were as-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号