首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New thermally stable polymers that contained benzimidazole and benzimidazobenzoisoquinoline fragments in polymer chains were synthesized by one-stage cyclopolycondensation of aromatic tetramines (3,3′, 4,4′-tetraminodiphenyl ether, 3,3′,4,4′-tetraminodiphenyl methane, 3,3′,4,4′-tetraminodiphenyl sylfone, and 3,3′-diaminobenzidine) with 1,4,5-naphthalene tricarboxylic acid 4:5–anhydride in polyphosphoric acid and with 1,4,5-naphthalene tricarboxylic acid 4:5–anhydride 1-phenyl ester. All polymers obtained were soluble in concentrated sulfuric acid, 85% phosphoric acid, polyphosphoric acid, methane sylfonic acid. Some were soluble in formic acid. Thermogravimetric analyses indicated that these polymers were stable up to 450–500°C in air. The polymers had good hydrolytic stability.  相似文献   

2.
High molecular weight polybenzoxazinones have been prepared by cyclo-polycondensation reaction of 4,4′-diamino-3,3′-biphenyldicarboxylic acid with a variety of aromatic carbonyl compounds using a solution polymerization technique in polyphosphoric acid. From the model reactions of anthranilic acid, and 4,4′-diamino-3,3′-biphenyldicarboxylic acid with benzoyl chloride in polyphosphoric acid, it is established that the cyclopolycondensation proceeds through the formation of an open-chain tractable precursor, polyamic acid of high molecular weight (ninh = 2.66) in the first step, which subsequently undergoes thermal or chemical cyclodehydration along the polymer chain, to yield, in the second step, a fully aromatic polybenz-oxazinone. Polybenzoxazinones thus obtained have excellent thermal stability both in nitrogen and in air.

The optimum polymerization conditions for obtaining polyamic acid of high molecular weight are determined by the study of reaction variables such as polymerization temperatures, monomer concentrations, and reaction time as well as the effect of P2O5 concentrations in polyphosphoric acid.  相似文献   

3.
The curing behavior of diglycidyl ether of bisphenol-A(DGEBA) with different phosphorus containing diamidediimide-tetraamines(DADITAs) was studied by DSC. Eight DADITAs of varying structures were synthesized by reacting 1 mole of pyromellitic anhydride(PMDA)/3,3′-benzophenone tetracarboxylic dianhydride(BTDA)/1,4,5,8-naphthalene tetracarboxylic dianhydride(NTDA)/4,4′-oxydiphthalic anhydride(ODPA) with 2 mole of L-tryptophan(T) in a mixture of acetic acid and pyridine(3:2 V/V) followed by activaton with thionyl chloride and then condensation with excess of phosphorus containing triamines tris(3-aminophenyl) phosphine(TAP) and tris(3-aminophenyl) phosphine oxide(TAPO). DADITAs obtained by reacting PMDA/BTDA/NTDA/ODPA with L-tryptophan followed by condensation with TAP/TAPO were designated as PTAP, PTAPO, BTAP, BTAPO, NTAP, NTAPO, OTAP and OTAPO respectively. The structural characterization of synthesized DADITAs was done by FTIR,1H-NMR,13C-NMR,31P-NMR spectroscopic techniques and elemental analysis. Thermal stability of the isothermally cured epoxy was investigated using dynamic thermogravimetry analysis. The glass transition temperature(Tg) was highest in DGEBA cured using PTAP. All epoxy thermosets exhibited excellent flame retardancy, moderate changes in Tg and thermal stability. Due to presence of phosphorus in curing agents, all epoxy resin systems met the UL-94 V-0 classification and the limiting oxygen index(LOI) reached up to 38.5, probably because of the nitrogen-phosphorus synergistic effect.  相似文献   

4.
Abstract

9-(2′,3′-Dihydroxyethyl)-8-bromoadenine was synthesized by the reaction of 9-(2′,3′-dihydroxyethyl)-adenine with bromine. The reaction of 9-(2′,3′-dihydroxyethyl)-8-bromoadenine with phosphorus oxychloride in trimethyl phosphate produced 9-(2′,3′-dihydroxypropyl)-8-bromoadenine-3′-phosphate. The condensation polymerization of 9-(2′,3′-dihydroxypropyI)-8-bromoadenine-3′-phosphate was conducted in refluxing dimethylformamide-water (9:1) using dicyclohexylcarbodiimide as a dehydrating agent. The oligomer obtained is soluble in water and has a molecular weight of more than 1000 according to gel-filtration measurement. This oligomer showed hypochromicity of 3°, with denatured yeast RNA. The condensation polymerization of 9(2′,3′-dihydroxypropyl)-8-bromoadenine-3′ -phosphate was also carried out using imidazole or a triethylamine-hydrochloric acid system.  相似文献   

5.
Poly(p-benzoquinono)diimidazoles have been synthesized under mild conditions (100 or 150°C) by one-stage polycondensation in N,N-dimethylacetamide (DMAc) or in polyphosphoric acid of 2,3,5,6-tetraamino-p-benzoquinone (TABQ) with terephthalaldehyde and isophthalaldehyde. The model compound 2,6-diphenyl-1,5-dihydro-1′,4′-benzoquinono[2′,3′-d:5′,6′-d′]diimidazole was also prepared by condensation of TABQ with benzaldehyde in DMAc at 100°C. The prepared polymers were completely insoluble in organic solvents but slightly soluble (0.5%) in strong acids with viscosities (ηinh) in the range of 0.17–0.38 dL/g (c = 0.2% in formic acid). Their thermal stability was studied by TG analysis.  相似文献   

6.
Six novel poly(amide‐imide)s PAIs 5a‐f were synthesized through the direct polycondensation reaction of six chiral N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f with bis(3‐amino phenyl) phenyl phosphine oxide 4 in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), triphenyl phosphite (TPP), calcium chloride (CaCl2) and pyridine. The polymerization reaction produced a series of flame‐retardant and thermally stable poly(amide‐imide)s 5a‐f with high yield and good inherent viscosity of 0.39–0.83 dLg?1. The resultant polymers were fully characterized by means of FTIR, 1H NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Thermal properties and flame retardant behavior of the PAIs 5a‐f were investigated using thermal gravimetric analysis (TGA and DTG) and limited oxygen index (LOI). Data obtained by thermal analysis (TGA and DTG) revealed that these polymers show good thermal stability. Furthermore, high char yields in TGA and good LOI values indicated that resultant polymers exhibited good flame retardant properties. N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f were prepared in quantitative yields by the condensation reaction of bicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride 1 with L‐alanine 2a , L‐valine 2b , L‐leucine 2c , L‐isoleucine 2d , L‐phenyl alanine 2e and L‐2‐aminobutyric acid 2f in acetic acid solution. These polymers can be potentially utilized in flame retardant thermoplastic materials.  相似文献   

7.
A series of sulfonated polyimides (SPIs) were synthesized from a sulfonated diamine of 4,4′‐bis(4‐aminophenoxy) biphenyl‐3,3′‐disulfonic acid (BAPBDS), common nonsulfonated diamines, and various tetracarboxylic dianhydrides including 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA), 3,4,9,10‐perylene tetracarboxylic dianhydride (PTDA), 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), 4,4′‐ketone dinaphthalene 1,1′,8,8′‐tetracarboxylic dianhydride (KDNTDA), and isophthatic dinaphthalene 1,1′,8,8′‐tetracarboxylic dianhydride (IPNTDA). Their membrane properties were investigated to clarify the effects of the dianhydrides. They displayed reasonably high mechanical properties, thermal stability, and proton conductivity. The dianhydrides with flexible and non‐coplanar structure (IPNTDA > KDNTDA > BTDA) led to the better solubility of the SPIs than those with rigid and coplanar one (NTDA, PTDA). The dianhydride with the smaller molecular weight led to the larger value of the number of sorbed water molecules per sulfonic acid group (λ) in membrane, that is, NTDA (λ: 17) > PTDA (15) > BTDA (14) > KDNTDA (12) > IPNTDA (10), and as a result let to the larger proton conductivity in water. All of the BAPBDS‐based SPIs showed the anisotropy in membrane swelling and in proton conductivity, of which the degree hardly depended on the dianhydride moieties. The water stability of SPI membranes against the aging in water at 130 °C for 192 h was in the order, PTDA = NTDA ≧ BTDA > KDNTDA > IPNTDA. The hydrolysis stability of polymer chain was similar between the BTDA‐ and KDNTDA‐based SPIs. These results are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 905–915, 2010  相似文献   

8.
In order to investigate synthetic route of polyperfluorotriazine elastomer, 2-trifluoromethyl4,6-bis(4′-iodo-2′-oxahexafluorobutyl)-1,3,5-triazine (1), a novel triazine monomer, was synthesized from 5-iodo-3-oxa-octafluoropentanesulfonyl fluoride (2) in eight-steps. 2 was reduced by potassium sulfite to the sulfinate (3), which was treated with hydriodic acid to yield 5-iodo-3oxa-hexafluoropentanoic acid (4). Compound 4 was transformed to 5-iodo-3-oxa-hexafluoropentanenitrile (7) through the corresponding ester 5 and amide 6. The desired product 1 was prepared by acylation-cyclodehydration of the imidoylamidine 9, obtained by condensation of the nitrile 7 with the amidine 8.The various methods for the esterification of perfluorocarboxylic acid were studied and a possible mechanism for the transformation of perfluorosulfinate to the corresponding perfluorocarboxylic acid by hydriodic acid was proposed.Crude 1 contained compounds 6, 11, 13, as impurities which were removed by low temperature crystallization followed by filtration through a short alumina column. The monomer 1 was polymerized by UV-irradiation in the presence of Hg with or without solvent. Polyperfluorooxaalkyl triazine 17 thus obtained showed good thermal stability. In the main chain of the polymer there was no weak unit of the uncyclized ring. Polymer 17 had an average molecular weight of ca. 1.33—2.0×10~4 (D. P.=27—42) and the temperature of 10% weight loss in nitrogen was 340℃.  相似文献   

9.
Five new optically active aromatic poly(amide-imide)s (PAIs) 5a–e were prepared from a direct polycondensation reaction of a new diacid of N,N′-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetra carboxylic)-bis-L-isoleucine 3 with various aromatic diamines 4a–e in a medium consisting of triphenyl phosphite (TPP), calcium chloride (CaCl2), pyridine (Py) and N-methyl-2-pyrrolidone (NMP). The polycondensation reaction produced a series of novel poly(amid-imide)s 5a–e in quantitative yields with inherent viscosities of 0.39–0.51 dL/g. The resulting polymers were fully characterized by means of 1H-NMR, FT-IR spectroscopy, elemental analyses, inherent viscosity, solubility test, specific rotation and thermal properties of them were investigated using TGA/DTG and differential scanning calorimeter (DSC). The diacid 4 was synthesized by the condensation reaction of bicyclo[2,2,2]oct-7-ene-2,3,5,6- tetracarboxylic dianhydride 1 with L-isoleucine 2 in acetic acid solution.  相似文献   

10.
A series of novel sulfonated polyimides (equivalent weight per sulfonic acid = 310–744 g/equiv) containing 10–70 mol % 1,5‐naphthylene moieties were synthesized as potential electrolyte materials for high‐temperature polymer electrolyte fuel cells. The polycondensation of 1,4,5,8‐naphthalene tetracarboxylic dianhydride, 4,4′‐diamino‐2,2′‐biphenyldisulfonic acid, and 1,5‐diaminonaphthalene gave the title polymer electrolytes. The polyimide electrolytes were high‐molecular‐weight (number‐average molecular weight = 36.0–350.7 × 103 and weight‐average molecular weight = 70.4–598.5 × 103) and formed flexible and tough films. The thermal properties (decomposition temperature > 260 °C, no glass‐transition temperature), stability to oxidation, and water absorption were analyzed and compared with those of perfluorosulfonic acid polymers. The polyimide containing 20 mol % 1,5‐naphthylene moieties showed higher proton conductivity (0.3 S cm?1) at 120 °C and 100% relative humidity than perfluorosulfonic acid polymers. The temperature and humidity dependence of the proton conductivity was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3901–3907, 2003  相似文献   

11.
New sulfonated aromatic copolyimides with controlled degree of sulfonation were prepared via polycondensation reactions of a sulfonated diamine and two unsulfonated diamines with 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NDA). The sulfonated diamine 3,3′‐disulfonic acid‐ bis[4‐(5‐amino‐1‐naphthoxy)phenyl]sulfone (DANPS) was synthesized through nucleophilic substitution reaction of 5‐amino‐1‐naphthol with disodium‐3,3′‐disulfonate‐4,4′‐dichlorodiphenysulfone (SDCDPS) and subsequent acidification. Two unsulfonated diamines 4,4′‐(5‐amino‐1‐naphthoxy)diphenylsulfone (ANDS) and 4,4′‐(4‐aminophenoxy)diphenylsulfone (APDS) were prepared by nucleophilic reaction of 5‐amino‐1‐naphthol and 4‐aminophenol with 4,4′‐dichlorodiphenylsulfone in the presence of potassium carbonate, respectively. After characterization of the monomers and polymers with common methods, the physical properties of the polymers including thermal behavior and stability, viscosity, molecular weight, and ion exchange capacity (IEC) were studied. The polymers showed high thermal stability and ion exchange capacity which were the basic requirements for application as fuel cell membranes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
High molecular weight poly(phenylenebenzobisoxazole) (PBO) was synthesized from 1,3-diamino-4,6-dihydroxybenzene dihydrochloride (1) and 1,4-bis(trichloromethyl)benzene (3) in polyphosphoric acid (PPA) or a mixture of PPA and methanesulfonic acid. When PPA was used as the solvent, 3 was first converted in situ to terephthalic acid before 1 was added to minimize degradation of 1. Compound 3 did not need to be sealed from atmospheric moisture because the trichloromethyl groups were not moisture sensitive. It was not necessary to use micronized 3. Adjustment of P2O5 content was optional for this reaction because no water was liberated from the condensation of 1 and 3. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2143–2145, 1997  相似文献   

13.
Abstract

Synthesis and characterization of polyesters of 4,4′-dihydroxy biphenyl with succinic, adipic, suberic and sebacic acids were carried out. Initially the diacids were converted to the corresponding acid chlorides in dimethyl formamide (DMF). 4,4′-dihydroxy biphenyl was prepared from 4-hydroxy biphenyl by bromination and subsequent hydrolysis. The low molecular weight polyesters were prepared by the condensation of diacid chlorides with 4,4′-dihydroxy biphenyl in DMF at appropriate temperature. All the polymers were characterized by 1H NMR, FT-IR, DSC and hot stage polarizing microscope. Thermotropic liquid crystalline behaviour was established by high temperature X-ray (HTXRD) at various temperature intervals. It was found that among the four compounds prepared, three of them showed nematic phase liquid crystallinity with the exception of the ester of succinic acid.  相似文献   

14.
Azo compounds were prepared by coupling of benzenediazonium chloride ions with 1-amino-2-hydroxy-4-naphthalene sulfonic acid under alkaline conditions, and Schiff bases, L1–3 were then obtained by the condensation of 1-amino-2-hydroxy-3-(phenylazo)-4-naphthalene sulfonic acid, 1-amino-2-hydroxy-3-(4-ethylphenylazo)-4-naphthalene sulfonic acid, and 1-amino-2-hydroxy-3-(4-nitrophenylazo)-4-naphthalene sulfonic acid with salicylaldehyde. New copper(II), nickel(II), and zinc(II) complexes of the Schiff base ligands were also prepared and characterized by spectroscopic methods, magnetic measurements, elemental, and thermogravimetric analysis.  相似文献   

15.
Six ladder or partly ladder polymers have been prepared by the condensation reactions of combinations of two diaminodithiophenols, 4,6-diamino-1,3-dithiophenol and 3,3′-dimercaptobenzidine, with three tetrachloroquinoxaline derivatives, 2,3,7,8-tetrachloro-1,4,6,9-tetraazaanthracene, 2,2′,3,3′-tetrachloro-6,6′-bisquinoxaline, and 2,2′,3,3′-tetrachloro-6,6′-diquinoxalyl ether, with the use of dimethylacetamide, hexamethylphos phoramide, and polyphosphoric acid as reaction media. The polymers thus obtained are highly colored, powedery materials which are slightly soluble in methanesulfonic acid and concentrated sulfuric acid. These polymers (ηinh > 1) show good thermal stability.  相似文献   

16.
A polybenzimidazolone prepared by the condensation of 1,45,8-naphthalene tetracarboxylic acid and 3,3′-diaminobenzidine and several model compounds were thermally degraded (300-500°C) under inert and oxidative conditions. In every case only small fragments, i.e., carbon oxides, cyanogen (trace), and water, were detected by spectroscopic and chromatographic analysis of all phases of the pyrolysis products. The significance of these results is discussed in light of the mechanism by which this aromatic heterocyclic system undergoes oxidative degradation.  相似文献   

17.
Bismaleimides containing ester, amide, urethane, and imide groups in the backbone were synthesized from maleimido benzoic acid via its acid chloride or isocyanate with 4,4′-dihydroxy-diphenyl-2,2-propane, 3,3′-diamino diphenyl sulfone, and 3,3′,4,4′-benzophenone tetracarboxylic acid anhydride by simple condensation or addition reaction. The new bismaleimides are characterized by IR, 1H-NMR, and elemental analysis. DSC studies of these bismaleimides indicated a curing exotherm in the temperature range 150–270°C with heat of polymerization 30–50 J/g. Thermogravimetric analysis of the uncured resins showed high thermal stability and char yield for imide containing bismaleimide. The observed char yields of the bismaleimide resins are in accordance with the calculated C/H ratios.  相似文献   

18.
A novel aromatic diacid, 3, 5‐dicarboxyl‐4′‐amino diphenyl ether, containing pendant phenoxy amine group was synthesized. Homo‐ and co‐polybenzimidazoles containing different content of pendant phenoxyamine groups were synthesized by condensation of 3,3′‐diaminobenzidine with this acid and a mixture of this acid and isophthalic acid in different ratio in polyphosphoric acid. Copolybenzimidazoles with structural variations were also synthesized based on this acid and pyridine dicarboxylic acid, terephthalic acid, adipic acid, or sebacic acid. The polymers have good solubility in polar aprotic solvents and strong acids and they form tough flexible films by solution casting. The polymers were characterized by different instrumental techniques (FTIR, TGA, DSC, XRD, etc.) and for solvent solubility, mechanical properties, inherent viscosity, and proton conductivity. The inherent viscosities of the polymers vary in the range of 0.62–1.52 dL/g. They have high thermal stability up to 475–506 °C (IDT) in nitrogen, high glass transition temperatures (Tg) ranging from 313 to 435 °C and good tensile strength ranging from 58 to 125 MPa. Proton conductivity of homo polymer is 3.72 × 10?3 S/cm at 25 °C and 2.45 × 10?2 S/cm at 200 °C © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5776–5793, 2008  相似文献   

19.
N-[4-(7-Methoxy-4-methyl-2-oxo-2H-chromen-8-yl)-thiazol-2-yl]-guanidine ( 2 ) has been prepared by the condensation of 4-methyl-7-methoxy-8-(2-bromoacetyl)coumarin ( 1 ) with guanylthiourea. 4-Methyl-7-methoxy-8-[2-(N′-(1-phenyl-ethylideneisopropylidene)-hydrazino]-thiazol-4-yl]chromen-2-ones ( 3 , 4 , and 5 ) have been prepared by reaction of 4-methyl-7-methoxy-8-(2-bromoacetyl) coumarin ( 1 ) and thiosemicarbazide in presence of acetophenone or acetone without any solvent. The formation of these compounds was further confirmed by the condensation of acetophenone/acetone thiosemicarbazones with 4-methyl-7-methoxy-8-(2-bromoacetyl)coumarin ( 1 ) in anhydrous ethanol in a two-step process. Similarly 8-[2-[N′-(benzylidene)hydrazine]-thiazol-4-yl]-7-methoxy-4-methyl-chromen-2-ones ( 6 , 7 , and 8 ) have been prepared by the condensation of 4-methyl-7-methoxy-8-(2-bromoacetyl)chromen-2-one with thiosemicarbazide and various aromatic aldehydes in a single step without any solvent. The formation of these compounds was further confirmed by the condensation of appropriately substituted benzaldehyde thiosemicarbazones with 4-methyl-7-methoxy-8-(2-bromoacetyl)coumarin in anhydrous ethanol. 4-Methyl-7-methoxy-8-(2-bromoacetyl) chromen-2-one (1) upon condensation with 3,5-dimercapto-4-amino-s-triazole in anhydrous ethanol resulted in the formation of 8-(3-mercapto-3H-[1,2,4]triazolo[3,4-b]thiadiazin-6-yl)-7-methoxy-4-methyl chromen-2-one (9). This compound ( 9 ) on reaction with various alkyl and phenacyl halides in anhydrous ethanol gave corresponding 4-methyl-7-methoxy-8-[3-(2-oxo-substituted sulphanyl)-7H-[1,2,4]triazolo[3,4-b]thiadiazin-6-yl]chromen-2-ones ( 10 to 18 ). The structures of newly prepared compounds have been confirmed from analytical and spectral data.  相似文献   

20.
4,5-Diaryl-2,3-dihydro-2-mercaptoimidazoles (2a–e) were synthesized. They reacted with chloroacetic acid in gl. acetic acid/Ac 2 O in presence of anhyd. sodium acetate afforded 5,6-diaryl-2,3-dihydro-imidazo[2,1-b]thiazol-3-ones (3a–d). Also these compounds were prepared by the action of chloroacetyl chloride on compounds (2) in pyridine. Compounds (3a–d) on condensation with aromatic aldehydes yield 2-arylmethylene-5,6-diaryl-2,3-dihydroimidazo[2,1-b]-thiazol-3-ones (4a–q). The latter compounds were prepared directly by the reaction of (2) with chloroacetic acid and the aromatic aldehydes. Compounds (3a–d) coupled with aryldiazonium salts in pyridine to give 2-arylhydrazono-5,6-diaryl-2,3-dihydroimidazo[2,1-b]thiazol-3-ones (5a–r). Also compounds (2) when reacted with 2 or 3-bromopropionic acid afford 2,3-di-hydro-5,6-diaryl-2-methylimidazo[2,1-b]thiazol-3-ones (6a–d) and 2,3-di-hydro-6,7-diaryl imidazo-[2,1-b]-1,3-thiazin-4-ones (7a–d), respectively. Compounds (3, 6, and 7) have been cleaved by aromatic amines to give the corresponding 2-(4′,5′-diaryl-2′,3′-dihydroimidazol-2′-yl)thioacetanilide (8a–f), 2-(2′,3′-dihydro-4′,5′-diaryl imidazol-2′-yl)thiopropionamide (9a–c), and 3-(2′,3′-dihydro-4′,5′-diaryl-imidazol-2′-yl)thiopropionamide (10a–d) respectively. All the prepared compounds show considerable antimicrobial activity against bacteria, yeast, and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号