首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
5-Fluorouracil(5-FU) loaded nanoparticles(NPs) were prepared by a high speed shearing double emulsion method with polylactide-co-glycolide-co-methoxy poly(ethylene glycol)(PLGA-mPEG) as loading material. The prepared NPs possess a negative zeta potential and their loading efficiency is about 15%(mass fraction). The result of in vitro release shows that the release behavior of 5-FU from NPs is coincident with Zero-level release from the second day.  相似文献   

3.
Ying  SONG  Li  Jian  LIU 《中国化学快报》2003,14(1):32-34
Poly( ε-caprolactone)(PCL) with weight-average molar mass over 10000g/mol was synthesized by microwave-assisted ring -opening polymerization of ε-caprolactone(ε-CL) with maleic acid(MA) as initiator (2.45GHz,360W,85min),Ibuprofen-PCL controlled release system was prepared directly by the ROP of ε-CL in its mixture with ibuprofen.The release of ibuprofen from the system was sustained and steady.  相似文献   

4.
In this paper, aliphatic polyesters functionalized with pendant carboxylic groups were synthesized via several steps. Firstly, substituted cyclic ketone, 2‐(benzyloxycarbonyl methyl)cyclopentanone (BCP) was prepared through the reaction of enamine with benzyl‐2‐bromoacetate, and subsequently converted into the relevant functionalized δ‐valerolactone derivative, 5‐(benzyloxy carbonylmethyl)‐δ‐valerolactone (BVL) by the Baeyer‐Villiger oxidation. Secondly, the ring‐opening polymerization of BVL with ε‐caprolactone was carried out in bulk using stannous octoate as the catalyst to produce poly(ε‐caprolactone‐coδ‐valerolactone) bearing the benzyl‐protected carboxyl functional groups [P(CL‐co‐BVL)]. Finally, the benzyl‐protecting groups of P(CL‐co‐BVL) were effectively removed by H2 using Pd/C as the catalyst to obtain poly(ε‐caprolactone‐coδ‐valerolactone) bearing pendant carboxylic acids [P(CL‐co‐CVL)]. The structure and the properties of the polymer have been studied by Nuclear Magnetic Resonance (NMR), Fourier Infrared Spectroscopy (FT‐IR) and Differential Scan Calorimetry (DSC) etc. The NMR and FT‐IR results confirmed the polymer structure, and the 13C NMR spectra have clearly interpreted the sequence of ε‐caprolactone and 5‐(benzyloxycarbonylmethyl)‐δ‐valerolactone in the copolymer. When the benzyl‐protecting groups were removed, the aliphatic polyesters bearing carboxylic groups were obtained. Moreover, the hydrophilicity of the polymer was improved. Thus, poly(ε‐caprolactone‐coδ‐valerolactone) might have great potential in biomedical fields.  相似文献   

5.
With adjustable amphiphilicity and anionic/cationic charge, biodegradability and biocompatibility, amino acid-based poly(ester amide)s(PEAs) have drawn attention in the research of tissue engineered vascular grafts. In this work, L-phenylalanine-based PEAs with or without L-lysine were synthesized through polycondensation, and ultrafine fibrous grafts consisted of PEAs and poly(ε-caprolactone)(PCL) in given mass ratios were further prepared via blend electrospinning. Surface characterizations by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the chemical structure, and the wettability indicated that the prepared PCL/PEAs electrospun membranes exhibited less hydrophobic than PCL. Tensile results showed that the PCL/PEAs membranes possessed suitable mechanical properties, which could meet the requirements of artificial blood vessels. Cell culture and hemolytic tests exhibited that the PCL/PEAs electrospun membranes are biocompatible. In general, the electrospun grafts of PCL/PEAs could be applied for vascular repair.  相似文献   

6.
A selenium-functionalizedε-caprolactone was synthesized by introducing a phenyl selenide group at the 7-position.A polymer was obtained through the ring-opening polymerization of this monomer in a base/thiourea binary organocatalytic system.A living polymerization process was achieved under mild conditions.The resulting polymers had a controlled molecular weight with a narrow molecular weight distributions and high end-group fidelity.Random copolymers could be obtained by copolymerizing this monomer withε-caprolactone.The thermal degradation temperature of the obtained copolymers decreased with the increasing molar ratio of selenide functionalized monomer in copolymers,while the glass transition temperature increased.In addition,the phenyl selenide side group could be further modified to a polyselenonium salt,which resulted in a polymer with good antibacterial properties.The survival rate of E.coli and S.aureus was only 9%with a polymer concentration of 62.5μg/mL.  相似文献   

7.
8.
A series of mixed, random cylindrical brush copolymers bearing polystyrene(PS) and poly(ε-caprolactone)(PCL) side chains were synthesized via the combination of ring-opening polymerization(ROP) and atom transfer radical polymerization(ATRP). These novel cylindrical brush copolymers have been characterized by means of nuclear magnetic resonance(NMR) spectroscopy, gel permeation chromatography(GPC) and differential scanning calorimetry(DSC). It was found that the mikto-armed cylindrical brush copolymers were microphase-separated in bulks and that the morphologies were dependent on the mass ratios of PS to PCL side chains. One of the cylindrical brush copolymers was employed to incorporate into epoxy thermoset to investigate effect of the mikto-armed cylindrical brush architecture on the reaction-induced microphase separation behavior. Depending on the concentration of the cylindrical brush in epoxy, the thermosets can display the morphologies with the spherical, worm-like and lamellar PS microdomains dispersing in continuous thermosetting matrices.  相似文献   

9.
李慧慧 《高分子科学》2014,32(9):1119-1127
The intermolecular interaction between poly(vinylphenol) (PVPh) and polycaprolactone (PCL) and the crystallization behavior of PCL in PCL/PVPh blends with different compositions and under different conditions were investigated by Fourier transform infrared spectra (FTIR) and differential scanning calorimetry (DSC). It has been shown that the PCL in the blends with different blend ratios all exists in crystalline state after solution casting, even though the crystallinity decreases with increasing PVPh content. For the melt crystallized samples, PCL in its 80/20 PCL/PVPh sample can still crystallize. The crystallinity is, however, lower than that of the solution cast sample. For blends containing 50% or 20% PCL, the as-cast samples are semicrystalline and can change to compatible amorphous state after heat treatment process. FTIR analysis shows the existence of hydrogen bonding between PCL and PVPh and the fraction of hydrogen bonds increases remarkably after heat treatment process.  相似文献   

10.

A simple method for preparing gold nanoparticles in aqueous solution has been developed by using glycosaminoglycan‐heparin as reducing and stabilizing agent and HAuCl4 as precursor. The obtained gold nanoparticles were characterized by UV‐vis spectroscopy, resonance light scattering spectroscopy (RLS), transmission electron microscopy (TEM) and electrophoresis technology. The influence of reactant concentration for the preparation of gold nanoparticles was investigated. The results indicated that the gold nanoparticles carried negative charges in the aqueous solution and the size and shape of the gold nanoparticles could be controlled by changing the concentration of the heparin. Moreover, the gold nanoparticles obtained with relatively high concentration of heparin were very stable and had relative narrow size distribution.  相似文献   

11.
Non-covalent adducts of poly(N-vinyl pyrrolidone) (PVP) (mol. wt. 10 K & 29 K) with sodium poly(α,L -glutamate)(PGNA) (mol. wt. 32 K) are prepared by evaporation of aqueous mixtures (EAM), ultra-centrifugation (UC) and dehydration of reverse micelles (DRM). The EAM and UC adducts contain nearly equal amounts of PVP while the DRM adduct has lower amounts. Higher-molecular-weight PVP favored greater PVP content in the adducts regardless of the method of preparation. DSC thermograms, and FT-IR and CD spectra of the three adducts in the solid state revealed that PVP and PGNA are intimately mixed and the PGNA is in a random conformation. Hydrophobic interactions between PGNA and PVP are evident in dilute aqueous solutions of all three adducts, while Na+ ions of PGNA remain as free ions. 2D-NOESY 1H NMR spectra of the EAM and UC adducts are very similar and show a strong correlation between the α-proton of PGNA with a pyrrolidone ring (no. 3 and no. 4 protons) and β-protons of PGNA with a pyrrolidone ring (no. 5 proton). In contrast, regarding the DRM adduct, only the α-proton of PGNA interacts with the pyrrolidone ring (no. 3 and no. 4 protons), presumably due to the orientation of the pyrrolidone ring at the organic phase–water interface of the reverse micelle, which causes the proton in position 5 of the ring to be buried in the organic phase. All three adducts dissociate in water to form free PVP and PGNA. However, the DRM adduct dissociates faster than other two, presumably due to reduced hydrophobic interactions. Differences in composition and properties observed for the non-covalent adducts may be attributed to the differences in intermolecular (hydrophobic) interactions imposed on the two components, PGNA and PVP, during each method of preparation.  相似文献   

12.
Summary: This study reported the preparation and characterization of PCL-b-mPEG (poly(ε-caprolactone)-block-poly(ethylene glycol)) and PLL-b-mPEG (poly(L-lactide)-block-poly(ethylene glycol)) diblock copolymers by microwave heating and comparison of resulted products the ones with prepared by conventional heating. Diblock copolymers were synthesized successfully by the microwave-assisted ROP in the presence of stannous octoate (SnOct2) as catalyst under nitrogen atmosphere in different monomer ratios. Structural and functional characterization of copolymers were performed by FTIR, 1H-NMR and DSC. Molecular weight values were determined by GPC and also calculated from 1H-NMR. According to the results, microwave irradiation allowed to obtain polymers with very narrow size distribution in very short reaction time. Similar polymers prepared by conventional heating were also synthesized for comparison. Molecular weight and conversion of polymers were increased by irradiation time. This change was continued until a certain time point after which no more increase was observed. It was concluded that microwave irradiation is a succesful method to obtain these diblock copolymers in very short reaction time and with a similar conversion obtained by conventional method.  相似文献   

13.
14.
Poly(2-hydroxyethoxybenzoate), poly(ε-caprolactone), and random poly(2-hydroxyethoxybenzoate/e-caprolactone) copolymers were synthesized and characterized in terms of chemical structure and molecular mass. The thermal behavior was examined by DSC. All the samples appear as semicrystalline materials; the main effect of copolymerization was lowering in the amount of crystallinity and a decrease of melting temperature with respect to homopolymers. Flory's equation described well the T m-composition data. Amorphous samples (in the 20–100%2-hydroxyethoxybenzoate unit concentration range) obtained by quenching showed amonotonic decrease of the glass transition temperature T g as the content of caprolactone units is increased. The Wood's equation described the T g-composition data well. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Poly(lactic acid) (PLA) and starch copolymers are obtained by reactive blending - varying the starch compositions from 0 to 60%. PLA is functionalized with maleic anhydride (MA), obtaining PLA-g-MA copolymers using dicumyl peroxide as an initiator of grafting in order to improve the compatibility and interfacial adhesion between the constituents. PLA + starch blends without a compatibilizer do not have sufficient interfacial adhesion. Decomposition temperature of PLA is not affected by grafting. Glass transition temperatures and dynamic mechanical properties are affected since MA has a plasticizing effect. Along with an increasing starch content friction decreases while wear loss volume in pin-on-disk tribometry has a minimum at nominal 15% wt. starch but increases at higher starch concentrations. The residual depth in scratching and sliding wear testing has a maximum at 15% starch; there is a minimum of storage modulus E′ determined in dynamic mechanical testing at the same concentration. Microhardness results also reflect the plasticization by MA.  相似文献   

17.
Fullerenes and its derivatives have attracted great interest from the viewpoints of both fundamental science and potential application. Fullerene-doping polymeric photoconductors have been extensively investigated due to their potential technological application. The enhancement of the photoconductivity of the poly (N-vinylcarbazole) (PVK) films by dopong with fullerenes (a mixture of C60 and C70) was for the first time reported by Wang1. He proposed that enhanced photoconductivity was attr…  相似文献   

18.
Two types of hybrid acrylic nanoparticles based on biodegradable and biocompatible polymers, cellulose ester and poly(ε-caprolactone), were produced via miniemulsification through high-pressure homogenization. An efficient emulsification procedure was first devised to yield high-solids-content polymer–monomer waterborne miniemulsions, and the fundamental parameters governing the stability of these composite miniemulsions were assessed. In addition, strategies to control the droplet size were investigated upon varying several experimental parameters such as the interfacial tension between the organic and the aqueous phase, the organic phase viscosity and the nature/concentration of surfactant. A series of thermally initiated polymerizations were then performed to produce nanosized hybrid particles.  相似文献   

19.
Poly(ε-caprolactone) (PCL)/cellulose nanocrystal (CNC) nanocomposites were produced via twin-screw extrusion. Microcellular nanocomposite samples were produced with microcellular injection molding using carbon dioxide (CO2) as physical blowing agent. The foaming behavior, physical properties, thermal properties, crystallization behavior, and biocompatibility were investigated. It was found that the CNCs interacted with the PCL matrix which led to a strong interface. The CNCs effectively acted as nucleation agents in microcellular injection molding. Both solid and foamed samples with higher levels of CNC content showed higher tensile moduli, complex viscosities, and storage moduli due to the reinforcement effects of CNCs. Furthermore, improvement in the foamed samples was more significant due to their fine cell structure. The addition of CNCs caused a reduction of the decomposition temperature and an increase in the glass transition temperature, crystallization temperature, and crystallinity of PCL. Moreover, the biocompatibility of the foamed nanocomposites with low CNC content was verified by 3T3 fibroblast cell culture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号