首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
K-型卡拉胶/聚乙烯吡咯烷酮共混水凝胶的辐射合成   总被引:9,自引:3,他引:6  
采用辐射技术合成了K 型卡拉胶 (KC) /聚乙烯吡咯烷酮 (PVP)共混水凝胶 ,研究了天然高分子KC、单体N 乙烯基吡咯烷酮 (N VP)、交联剂二甲基丙烯酸十四甘醇酯 ( 1 4G) ,辐照剂量以及剂量率等对辐射合成的KC/PVP共混水凝胶性质的影响 .实验发现 ,KC与适当比例的N VP共混后在一定剂量范围内辐照可得到高强度、高溶胀行为的KC/PVP共混水凝胶 ,随着共混凝胶内KC含量的相对增加 ,凝胶强度及溶胀性的能均显著提高 ,但合成该共混凝胶的最佳剂量却相对提前 ;加入 1 4G后降低了KC/PVP共混凝胶辐射合成最佳剂量 ,同时使KC/PVP共混凝胶的强度进一步提高 ;剂量、剂量率对KC/PVP共混凝胶的性质亦有很大的影响 .分析表明 ,KC与N VP共混后 ,在较低剂量下KC的降解被抑制 ,从而获得一种由物理交联的KC和化学交联的PVP形成的互穿网络 (IPN)凝胶  相似文献   

2.
采用辐射技术制备了κ-型卡拉胶(KC)/聚乙烯基吡咯烷酮(PVP)共混水凝胶,研究了共混凝胶内KC含量、PVP的分子量和辐照剂量等对KC/PVP共混水凝胶性质的影响.实验发现,KC与高分子量的PVP(k-90)共混后在一定剂量范围内辐照可得到高强度、高溶胀行为的KC/PVP共混水凝胶,随着共混凝胶内KC含量的增加,凝胶强度及溶胀性能均显著提高.分析表明,KC与高分子量的PVP共混后,在较低剂量下KC的降解被抑制,从而获得一种由物理交联的KC和化学交联的PVP形成的互穿网络(IPN)凝胶.  相似文献   

3.
A series of hydrogels in the form of rods were prepared from kappa-carrageenan (KC) and poly (N-vinyl pyrrolidone) (PVP) by gamma radiation with 60Co γ source at room temperature. The properties of the prepared hydrogels, such as the gel strength, gel fraction and swelling behavior were investigated. Incorporation of KC into the PVP/water system increased obviously the gel strength and equilibrium degree of swelling (EDS) of PVP hydrogel. The experimental analyses showed that the crosslinking reaction of PVP was quicker than the degradation of KC at a low dose (less than 30 kGy), and the degradation of KC was inhibited in the PVP/KC mixture system. So an interpenetrating polymer network (IPN) hydrogel composed of PVP (a chemical crosslinking network) and KC (a physical crosslinking network) was proposed here. The existence of different classes of water in this IPN system was shown by water melting curves using DCS.  相似文献   

4.
Poly(vinyl alcohol) (PVA) is an interesting material with good biocompatibility, high elasticity and hydrophilic characteristics. PVA hydrogels have been formed through chemical crosslinking with aldehyde, photopolymerization and physical crosslinking with freeze-thawing. In this study, crosslinked hydrogels based on PVA, and poly(ethylene glycol) (PEG) were prepared by gamma-ray irradiation, and then annealed at 120 °C. The properties of a hydrogel such as gel fraction, swelling behavior, gel strength as a function of PEG content and annealing time were investigated. Also, the thermal behaviors were examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The gel fraction decreases with an increase in PEG content and decrease in annealing time. The tensile strength increases with an increase in annealing time. The thermal behaviors have shown different patterns according to the annealing time. The improved properties suggest that PVA/PEG blend hydrogel can be a good candidate for applications in the articular cartilage.  相似文献   

5.

Copolymerization of acrylic acid (AAc) and gelatinized maize starch in aqueous medium using γ‐irradiation, followed by neutralization with alkali solution was carried out. The preparation conditions, such as irradiation dose and starch/AAc compositions were investigated. The higher the irradiation dose, as well as the AAc content in the feed solution, the higher the gel content. The copolymers were characterized by FTIR spectroscopy, thermo‐gravimetric analysis (TGA) and scanning electron microscopy (SEM). SEM revealed that the higher the dose, the lower the copolymer pore size. Starch/AAc copolymers have thermal stability higher than that for starch and poly acrylic acid individually. The swelling of starch/AAc hydrogels reduced as the gel content increases. The maximum water absorption obtained for starch/AAc hydrogels in distilled water was 200 g/g, and for neutralized starch/AAc hydrogels was 350 g/g. The swelling ratio of starch/AAc hydrogels of different compositions in NaCl solution is lower than that obtained in distilled water. The results suggest that the neutralized starch/AAc hydrogels have a high swelling property, and can be used in a variety of commercial applications.  相似文献   

6.
The purpose of this paper is studying the effect of incorporation of Multiwall Carbon Nanotubes (MWCNT) into two different nanocomposites in poly vinyl alcohol (PVA)/polyvinylpyrrolidone (PVP), and PVA/Polyethylene glycol (PEG). MWCNT were synthesized by chemical vapor deposition (CVD) method using acetylene and Fe/Co/Al2O3 as carbon precursor and catalyst, respectively. Nitric acid and sulfuric acid were used for purification and functionalization of MWCNT. Afterward, highly pure and functionalized MWCNT (0, 0.02, and 0.05% w/w) were incorporated in PVA/PVP and PVA/PEG to synthesize PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites hydrogel membranes that cross-linked by freezing–thawing. PEG and PVP were selected in these nanocomposites as dispersion matrix for MWCNT as well as for increasing the elasticity of the nanocomposites membranes. The morphology of the hydrogels was characterized by SEM, FTIR, XRD, TGA, and the mechanical properties of the hydrogel membranes were investigated. The swelling behavior in different pH-buffer solutions was studied as well as studying weight loss percentage and swelling kinetic. The drug releasing process of the hydrogel membranes was investigated using salicylic acid as a model drug. It was found that MWCNT are dispersed well into the polymers and crystallinity, mechanical properties and thermal stability of the hydrogels contain MWCNT are better than that without MWCNT. Maximum degree of swelling was observed at pH 7 and swelling degree increases with increasing the ratio of MWCNT in the hydrogels from 0.02 to 0.05%. All hydrogel membranes followed non-Fickian mechanism and drug releasing were controlled by varying the pH and amount of MWCNT.  相似文献   

7.
Using polymer hydrogels and nanocomposites hydrogels still promising materials for many applications. Polyvinyl pyrrolidone (PVP) has been used with various polymers synthetic and natural for different applications. In this study PVP and hydroxyl ethyl methacrylate (HEMA) copolymer hydrogels were prepared by the aid of gamma radiation and the PVP/HEMA nanocomposite hydrogels were obtained by in situ adsorption and reduction method of iron salts and silver nitrates (AgNO3) to form PVP/HEMA-Fe3O4 and PVP/HEMA-Ag nanocomposites. The prepared hydrogels and the formed nanoparticles were studied by various techniques; FTIR, TEM, SEM and also the gel content and swelling behavior were evaluated. The prepared hydrogels and nanocomposites hydrogels were examined as drug delivery systems for Ciprofloxacin HCl as model drug. The PVP/HEMA-Fe3O4 nanocomposite gave the suitable load and release behavior towards Ciprofloxacin HCl.  相似文献   

8.
In order to obtain a more ideal hydrogel wound dressing, crosslinked hydrogel films blended with polyvinyl alcohol (PVA), polyvinyl pyrrolidone, kappa-carrageenan (KC), and powder silk were prepared by electron beam, and their physiochemical properties were investigated as a combination of function factors. The experimental results showed that the gel fraction of the hydrogel films depended mainly on irradiation dose and the monomer concentration of the polymers, the properties of hydrogel could be greatly extended or improved by blending homopolymers. The rate of gel formation of the hydrogel was raised, and the water evaporation from hydrogel could be retarded after mixing with KC, while the tensile strength of hydrogel films were obviously increased after mixing with silk. Toxicity and healing effect of PVA/PVP/KC/silk blended hydrogel films as wound dressings were evaluated. The irradiated blended hydrogel showed satisfactory properties for wound dressing, the hydrogel did not induceany acute general toxic effects, and it is effective for fast healing of wound.  相似文献   

9.
The electron beam irradiation technique has been utilized to prepare hydrogel wound dressings. The composition of the dressings is based on polyvinylpyrrolidone (PVP), poly(ethylene glycol) (PEG), and agar. Increasing the irradiation dose leads to an increase in the gel fraction; this increase is due to increased crosslink density. The gel fraction% decreases as the PEG concentration increases. The maximum swelling% decreases with increasing the irradiation dose, but increases with increasing the PEG concentration. This relationship can be utilized to modify the gel properties as gel fraction% and maximum swelling of the hydrogel. The prepared dressings could be considered as a good barrier against microbes.  相似文献   

10.
The performance of hydrogels prepared with traditional natural starch as raw materials is considerable; the fixed ratio of amylose/amylopectin significantly limits the improvement of hydrogel structure and performance. In this paper, starch hydrogels were prepared by physical blending and chemical grafting, with the aid of ultrasonic heating. The effects of different amylose/amylopectin ratios on the microstructure and water retention properties of starch hydrogels were studied. The results show that an increase in amylopectin content is beneficial to improve the grafting ratio of acrylamide (AM). The interaction between the AM grafted on amylopectin and amylose molecules through hydrogen bonding increases the pores of the gel network and thins the pore walls. When the amylopectin content was 70%, the water absorption (swelling 45.25 times) and water retention performance (16 days water retention rate 44.17%) were optimal. This study provides new insights into the preparation of starch-based hydrogels with excellent physical and chemical properties.  相似文献   

11.
Hydrogels manufactured by radio-induced crosslinking and simultaneous sterilisation of hydrogels of PVP, PEG and agar, according to the Rosiak method, have many desirable properties for using as wound dressings. However, some properties need to be improved or better controlled. The membranes need to be strong enough to be freely used. Another important property to be controlled is the capacity of absorption of exudate and the kinetics of drying. Therefore, it was necessary to understand the role of main parameters (agar, PVP, PEG concentration and dose) in the structure of the net and in the hydration and dehydration properties. The structure of the membranes was studied by sol analysis and the hydrating/dehydrating properties were studied by isothermal thermogravimetric analysis. The gel content for all samples were always in agreement with expected values considering that only PVP undergoes crosslinking. The hydrating and dehydration results did not show variation with the tested parameters. It was concluded that the network was solely composed of crosslinked PVP plasticezed by the other compounds. The properties of hydration/dehydration is related rather to diffusion than to capillarity or osmose and to the chemical retention of water in the polymeric matrix.  相似文献   

12.
The use of hydrogels as biomaterials has increased lately. Poly(vinyl pyrrolidone) (PVP) is an example of polymer hydrogels applied for the synthesis of hydrogel to be used in different biomedical applications. This paper describes a study on rheological properties of PVP hydrogels obtained by gamma radiation techniques. PVP hydrogels were obtained by gamma radiation of PVP water solutions with different radiation doses. It was studied the influence of additives such as poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and glycerol on the rheological behaviour of the gel. The rheological behaviour of hydrogel samples was characterized by measuring the shear storage modulus (G′) under dynamic shear loading. Besides this, sterility and cytotoxicity tests were performed. The study on rheological behaviour of hydrogels showed that G′ of PVP gels change according to the additive used. Glycerol increases the fluidity of the gel. The influence of PEG depends on the amount and on its molecular mass. The increase on PEG amount and molecular mass cause a decrease of G′ and an increase in the crosslinking density of PVP hydrogel network. The use of high molecular weight PEO allows the increase of the elasticity of the PVP gels.  相似文献   

13.
Copolymer network hydrogels were prepared by gamma irradiation of aqueous solutions of poly(vinyl pyrrolidone) (PVP) and acrylic acid monomer (AAc). The composition of the final hydrogels compared to the composition of the initial preparation solutions of hydrogels was determined. The chemical structure and nature of bonding was characterized by IR spectroscopy analysis, while the thermal durability of the prepared hydrogels was assessed by thermogravimetric analysis (TGA). The kinetic swelling in water and the pH-sensitivity of PVP/AAc copolymer hydrogels was studied. The drug release properties of PVP/AAc hydrogels taking methyl orange indicator as a drug model was investigated. The IR spectra indicate the formation of copolymer networks, whereas the TGA study showed that the PVP/AAc hydrogels possess higher thermal stability than pure PAAc and lower than PVP hydrogels. The kinetic swelling in water showed that all the hydrogels reached equilibrium after 24 h and that the degree of swelling increases with increasing the ratio of AAc in the initial feeding solutions. It was found that the degree of swelling of PVP/AAc hydrogels increases greatly within the pH range 4-7 depending on composition.  相似文献   

14.
A series of thermoreversible copolymeric hydrogels with various molar ratios of N-isopropylacrylamide (NIPAAm) and hydrophobic monomers such as 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate (OFPMA) and n-butyl methacrylate (BMA) were prepared by emulsion polymerization. The effect of hydrophobic monomer on the swelling behavior and mechanical properties of the present copolymeric hydrogels was investigated. Results showed that the equilibrium swelling ratio and critical gel transition temperature (CGTT) decreased with an increase of the content of hydrophobic monomer, but the gel strength of the gel increased with an increase of the content of hydrophobic monomer. Due to stronger hydrophobicity of OFPMA, the NIPAAm/OFPMA copolymeric hydrogels had lower swelling ratios and higher gel strengths than NIPAAm/BMA copolymeric gels.  相似文献   

15.
Polymer gels as soft biomaterials have found diverse applications in biomedical field, e.g. in management and care of wound as wound dressing.The recent researches on nanocomposite materials have shown that some properties of polymers and gels significantly improve by adding organoclay into polymeric matrix. In this work, in order to obtain wound dressing with better properties, nanocomposite hydrogel wound dressing was prepared using combination of polyvinyl alcohol hydogel and organoclay, i.e. Na-montmorillonite, via the freezing-thawing method. The effect of organoclay quantity on the structural, swelling, physical and mechanical properties of nanocomposite hydrogel wound dressing was investigated. The results showed that the nanocomposite hydrogels could meet the essential requirements for the reasonable wound dressing with some desirable characteristics such as relatively good swelling, appreciated vapour transmission rate, excellent barrierity against microbe penetration and mechanical properties. The results also indicated that the quantity of the clay added to the nanocomposite hydrogel is the key factor in obtaining such suitable properties required for wound dressing.  相似文献   

16.
大孔PAMPS/PVA半互穿网络型水凝胶的制备及其性能研究   总被引:1,自引:0,他引:1  
袁丛辉  林松柏  柯爱茹  刘博  全志龙 《化学学报》2009,67(16):1929-1935
以PEG6000为成孔剂, 合成了大孔聚(2-丙烯酰胺-2-甲基丙磺酸)/聚乙烯醇半互穿网络型(s-IPN)水凝胶. 红外分析表明, PVA与PAMPS之间形成了较强的氢键, 使得PVA分子上的C—O伸缩振动吸收峰移向了低波数处. X射线衍射分析发现, 当PVA用量较高时, 由于部分的PVA结晶, 使得凝胶的半互穿网络结构不均匀. 电镜分析结果表明, 没有使用成孔剂的凝胶表面成褶皱形, 不存在任何孔洞结构; 而以PEG6000为成孔剂的凝胶表面存在相互贯穿的大孔结构. 研究了该水凝胶的溶胀性能, 结果表明, 该水凝胶的平衡溶胀度在116至320之间; 而成孔剂PEG6000的加入能较大幅度提高凝胶的溶胀速率, 凝胶在240 min之内就能达到溶胀平衡. 对凝胶抗压缩性能的研究表明, 当PVA用量为9.1% (w)时, 凝胶的抗压缩强度最大, 可达12.0 MPa; 而成孔剂的加入会在一定程度削弱凝胶的抗压缩强度. 该凝胶具有较好的电场敏感性, 研究发现, 将吸去离子水达到溶胀平衡的凝胶放入施加有电场的0.2 mol•L-1 NaCl溶液中时, 凝胶迅速偏向阳极. 而PVA和成孔剂PGE6000的用量均对凝胶的偏转速度以及最大偏转角存在较大的影响.  相似文献   

17.
Hydrogel systems composed of kC/Xylan (kC/OSX or kC/BX) blends and linear polyvinylpyrrolidone (PVP) were prepared in the presence of water soluble initiator sodium persulphate (KPS) with microwave irradiation. The hydrogel materials were investigated by measuring their syneresis, swelling, gel fraction, and rheological properties. Physicochemical and rheological properties of the natural polysaccharide (kC/Xylans) blends were modified significantly after blending with PVP. The introduction of PVP and the formation of semi-interpenetrating polymer network (semi-IPN) structure improved the gelling properties of the resulting hydrogels. It has been proven, that a high incorporation of PVP could only be obtained if the hydrogels were prepared using KPS initiator and microwave irradiation in combination. FTIR, CP-MAS 13C NMR, and elemental analysis confirmed the presence of PVP in the blends but no direct evidence for covalent bonds could be obtained.  相似文献   

18.
In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing.In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV–vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.  相似文献   

19.
以聚乙二醇(PEG)、聚氧化丙烯二醇(PPG)、异弗尔酮二异氰酸酯(IPDI)为主要原料制备聚氨酯预聚体(PU),与丝素蛋白水溶液(SF)交联制得丝素蛋白-聚氨酯(SF-PU)复合水凝胶.分别利用ATR、SEM对水凝胶组成、结构及微观形貌进行表征;DSC、吸水溶胀测试探讨了丝素蛋白与聚氨酯的质量比(SF/PU)以及聚氨酯中不同软段质量比(PEG/PPG)对SF-PU水凝胶热性能、溶胀性能的影响.结果表明,SF-PU水凝胶具有多孔结构;样品中不同的SF/PU、PEG/PPG均对材料的玻璃化转变温度、结晶度及溶胀性能产生影响,且当水凝胶组分为SF/PU=1/25、PEG/PPG=2/1时,平衡溶胀比(ESR)可达到440%;水凝胶在溶胀初始阶段符合菲克扩散模型,整个溶胀过程遵循溶胀动力学2级方程.  相似文献   

20.
以辛酸亚锡为催化剂 ,通过星型聚乙二醇 (PEG)引发ε 己内酯 (CL)开环聚合 ,制备了PEG b PCL嵌段共聚物 ,进一步以丙烯酸酯封端 ,合成了 3种水溶性大分子单体 .以 2 ,2 二甲氧基 2 苯基苯乙酮为引发剂 ,在紫外光作用下 ,大分子单体在水中由于胶束的形成能够迅速聚合形成水凝胶 .利用1 H NMR、FTIR、DSC、TGA、ESEM、凝胶含量、溶胀比等分析测试手段对大分子单体及其形成的水凝胶进行了表征 .结果表明 ,干胶迅速吸水而达到溶胀平衡 ,水凝胶具有较大的溶胀比和高的水含量 ;随着PEG臂数的增加 ,干胶的熔融峰顶温度下降 ,凝胶的溶胀比减小 ;ESEM图片上清晰地表明水凝胶的网络结构  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号