共查询到20条相似文献,搜索用时 0 毫秒
1.
Gregory B. Kharas Benjamin L. Hill Christopher H. Agos Paula J. Bosco Jose F. Camacho Bryan S. Clay 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(8):797-802
Novel electrophilic trisubstituted ethylene monomers, oxy ring substituted 2-cyano-3-phenyl-2-propenamides, RC6H4CH? C(CN)CONH2 (where R is 2-CH3O, 3-CH3O, 4-CH3O, 2-C2H5O, 3-C2H5O, 4-C2H5O, 4-C3H7O, 4-C4H9O, 4-C6H13O, 3-C6H5O, 4-C6H5O, 3-C6H5CH2O, 4-C6H5CH2O), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, AIBN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (0.2–1.2 wt%), which then decomposed in the 500–800°C range. 相似文献
2.
Gregory B. Kharas Benjamin L. Hill Monica V. Garcia Walter J. Kinderman Kevin N. Kopack Jeffrey J. Kropp 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(5):331-335
Novel trisubstituted ethylenes, ring-trisubstituted 2-cyano-3-phenyl-2-propenamides, RC6H2CH?C(CN)CONH2 (where R is 2,4,6-trimethyl, 2,3-dimethyl-4-methoxy, 2,3,4-trimethoxy, 2,4,5-trimethoxy, 2,4,6-trimethoxy, and 3,4,5-trimethoxy) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-trisubstituted benzaldehydes and cyanoacetamide and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution in the presence of a radical initiation (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. Thus, the order of relative reactivity (1/r1) and the tendency toward alternation of monomer units in the copolymer for the monomers is 2,4,6-(CH3)3 (0.71) > 2,3-(CH3)2-4-CH3O (0.52) > 2,3,4-(CH3O)3 (0.34) > 2,4,5-(CH3O)3 (0.30) > 3,4,5-(CH3O)3 (0.15) > 2,4,6-(CH3O)3 (0.12). High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (2.9–9.9 wt%), which then decomposed in the 500–800°C range. 相似文献
3.
Gregory B. Kharas Najib J. Ayman Rocelyn Calso Lydia Jordanovic Fiona Lane Jevgenijs Lusciks 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(6):412-416
Novel electrophilic trisubstituted ethylene monomers, halo ring-disubstituted 2-cyano-3-phenyl-2-propenamides, RPhCH = C(CN)CONH2, where R is 2,3-difluoro, 2,4-difluoro, 2,5-difluoro, 2,6-difluoro, 3,4-difluoro, 3,5-difluoro, 2-chloro-4-fluoro, 3-chloro-2-fluoro, 3-chloro-4-fluoro were prepared and copolymerized with styrene. The monomers were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (10–14 wt%), which then decomposed in the 500–800°C range. 相似文献
4.
G.B. Kharas Nathan J. Kuffel Thomas Speltz Eyad Bittar Daniel Canby Allison E. Grecco 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(1):10-14
Novel electrophilic trisubstituted ethylenes, halophenoxy ring substituted 2-cyano-3-phenyl-2-propenamides, RC6H4CH?C(CN)CONH2,where R is 4-(4-bromophenoxy), 2-(4-chlorophenoxy), 3-(4-chlorophenoxy), 4-(3-chlorophenoxy), 4-(4-chlorophenoxy), and 4-(4-fluorophenoxy) were prepared and copolymerized with styrene. The monomers were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution in the presence of a radical initiator, AIBN at 70°C. The compositions of the copolymers were calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. Thus, the order of relative reactivity (1/r1) is 4-(4-ClC6H4O) (2.01) > 4-(4-FC6H4O) (0.89) > 4-(4-BrC6H4O) (0.73) > 3-(4-ClC6H4O) (0.65) > 2-(4-ClC6H4O) (0.24) > 4-(3-ClC6H4O) (0.22). High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (10.4–15.0 wt%), which then decomposed in the 500-800°C range. 相似文献
5.
Gregory B. Kharas Lisa M. Gennett Yolondria L. Harvey Elizabeth R. Jennings Denny Petropoulos Ovie C. Smith 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(3):163-167
Novel trisubstituted ethylenes, chlorine ring-substituted 2-cyano-3-phenyl-2-propenamides, RC6H3CH?C(CN)CONH2 (where R is 2,3-dichloro, 2,4-dichloro, 2,6-dichloro, 3,4-dichloro, 2-chloro-5-nitro, 4-chloro-3-nitro, 5-chloro-2-nitro) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution in the presence of a radical initiation (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. Thus, the order of relative reactivity (1/r1) and the tendency toward alternation of monomer units in the copolymer for the monomers is 2-Cl-5-NO2 (3.09) > 5-Cl-2-NO2 (1.88) > 4-Cl-3-NO2 (0.97) > 2,6-Cl2 (0.93) > 3,4-Cl2 (0.31) > 2,4-Cl2 (0.30) > 2,3-Cl2 (0.22). High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (3.5–5.0 wt%), which then decomposed in the 500–800°C range. 相似文献
6.
G. B. Kharas Hemal Bhavsar Kylie S. Nordness Erin A. Pekovitch Megan E. Pyrz Eric R. Rice 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(6):407-411
Novel electrophilic trisubstituted ethylene monomers, halo ring-substituted 2-cyano-3-phenyl-2-propenamides, RPhCH ? C(CN)CONH2, where R is 2-bromo, 3-bromo, 2-fluoro, 3-fluoro, 2-iodo, 3-iodo, and 4-iodo were prepared and copolymerized with styrene. The monomers were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (7-19 wt%), which then decomposed in the 500–800°C range. 相似文献
7.
Gregory B. Kharas Carla F. Dos Santos Youya Gao Roberto Godina Paul John Courtney Kent 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(10):600-604
Novel trisubstituted ethylenes, oxy ring-substituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is 2-methoxy, 3-methoxy, 4-methoxy, 2-ethoxy, 3-ethoxy, 4-ethoxy, 4-propoxy, 4-butoxy, 3-phenoxy, 4-phenoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of oxy ring-substituted benzaldehydes and propyl cyanoacetate and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (1.2–3.6% wt.), which then decomposed in the 500–800°C range. 相似文献
8.
Gregory B. Kharas Hui Feng Christopher Aranda Maya E. Navarro Stephanie Pacheco Quinn Pazderka 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(7):504-509
Novel trisubstituted ethylenes, oxy ring-substituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH=C(CN)CO2C4H9 (where R is 2-methoxy, 3-methoxy, 4-methoxy, 2-ethoxy, 3-ethoxy, 4-ethoxy, 4-propoxy, 4-butoxy, 4-hexyloxy, 3-phenoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of oxy ring-substituted benzaldehydes and butyl cyanoacetate and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. The order of relative reactivity (1/r1) for the monomers is 4-methoxy (6.56) > 3-methoxy (2.97) > 2-methoxy (2.72) > 4-butoxy (2.20) > 3-ethoxy (2.18) > 4-propoxy (2.15) > 4-hexyloxy (1.78) > 4-ethoxy (1.66) > 2-ethoxy (1.48) > 3-phenoxy (1.29). Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200-500°C range with residue (0.8–3.6% wt.), which then decomposed in the 500–800°C range. 相似文献
9.
Gregory B. Kharas Sara M. Rocus Varun Elangovan Anna N. Kovaleva Sarah Malik Ogechi Nwosu 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(12):971-975
Novel trisubstituted ethylenes, oxy ring-disubstituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH=C(CN)CO2C4H9 (where R is 4-methoxy-2-methyl, 4-methoxy-3-methyl, 3-ethoxy-4-methoxy, 4-ethoxy-3-methoxy, 3,4-dibenzyloxy, 2-benzyloxy-3-methoxy, and 3-benzyloxy-4-methoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR.Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200-500°C range with residue (2-17 % wt.), which then decomposed in the 500-800°C range. 相似文献
10.
Gregory B. Kharas William S. Schjerven Raymond Wenk Kevin A. Tague Elizabeth M. Betzen Nina R. Kodros 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(5):360-364
Novel electrophilic trisubstituted ethylene monomers, methyl and methoxy ring- substituted 2-cyano-3-phenyl-2-propenamides, RPhCH=C(CN)CONH2, where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2-(3-methoxyphenoxy), 2-(4-methoxyphenoxy), 3-(4-methoxyphenoxy), 4-(4-methylphenoxy), 2,3-methylenedioxy were prepared and copolymerized with styrene. The monomers were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H- and 13C-NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (5.8–33.8 wt%), which then decomposed in the 500–800°C range. 相似文献
11.
Gregory B. Kharas Alexander A. Delgado Karen Aco Louise M. Cardenas Miriam L. Lopez Akami D. Mazerat 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(4):365-369
Electrophilic trisubstituted ethylenes, dihalogen ring-substituted ethyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C2H5 (where R is 2,3-diCl, 2,4-diCl, 2,6-diCl, 3,4-diCl, 3,5-diCl, 2,3-diF, 2,4-diF, 2,5-diF, 2,6-diF, 3,4-diF, 3,5-diF) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and ethyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 3,4-diCl (1.89) > 2,4-diCl (1.84) > 3,5-diCl (1.40) > 2,6-diCl (1.21) > 2,4-diF (1.16) > 2,3-diF (1.01) > 2,3-diCl (0.74) > 3,4-diF (0.52) > 2,6-diF (0.45) > 3,5-diF (0.44) > 2,5-diF (0.33). Relatively high Tg of the copolymers in comparison with that of polystyrene indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2.6–5.0 wt%), which then decomposed in the 500–800°C range. 相似文献
12.
Gregory B. Kharas Benjamin L. Hill Jerry J. Frangello Agustin Orosquieta Annette Martin Christine Dittmann 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(3):192-196
Electrophilic trisubstituted ethylenes, ring-substituted ethyl 2-cyano-1-oxo-3-phenyl-2-propenylcarbamates, RC6H3CH = C(CN)CONHCO2C2H5(where R is 2-CN, 3-CN, 4-CN, 3-Br- 4-CH3O, 5-Br-2-CH3O, 5-Br-2,3-(CH3O)2, 5-Br-2,4-(CH3O)2), were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and N-cyanoacetylurethane, and characterized by CHN analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H- and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 5-Br-2-CH3O (3.4) > 5-Br-2,3-(CH3O)2 (1.7) > 3-Br- 4-CH3O (1.4) > 5-Br-2,4-(CH3O)2 (0.7) > 4-CN (0.4) > 3-CN (0.4) > 2-CN (0.3). High T g of the copolymers in comparison with that of polystyrene indicates decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene structural unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in 250–420°C with residue (5–15% wt), which then decomposed in the 420–650°C range. 相似文献
13.
Gregory B. Kharas Benjamin L. Hill Nga Y. Du Andrea S. Lorenz Nelly Fliman Amy M. Reznick 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(2):94-98
Electrophilic trisubstituted ethylenes, fluoro ring-substituted ethyl 2-cyano-1-oxo-3-phenyl-2-propenylcarbamates, RC6H3CH = C(CN)CONHCO2C2H5(where R is 4-F-3-CH3, 2-CF3, 4-CF3, 2,4-diF, 2,5-diF, 2,6-diF, 3,4-diF, and 3,5-diF), were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and N-cyanoacetylurethane, and characterized by CHN analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H- and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers 4-CF3 (5.4) > 2,6-diF (2.0) > 2,4-diF (1.7) > 2,5-diF (1.0) > 2-CF3 (0.8) > 3,4-diF (0.5) > 3,5-diF (0.4) > 4-F-3-CH3 (0.3). High T g of the copolymers in comparison with that of polystyrene indicates decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene structural unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in 270–420°C with residue (5–13% wt), which then decomposed in the 420–650°C range. 相似文献
14.
Gregory B. Kharas Youya Gao Jihad Aburas Christina Chintanaphol Mallory L. Davis Hubert Dolubizno 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(8):593-598
Novel trisubstituted ethylenes, ring-substituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH=C(CN)CO2C4H9 (where R is 2-C6H5CH2O, 3-C6H5CH2O, 4-C6H5CH2O, 4-CH3COO, 3-CH3CO, 4-CH3CO, 4-CH3CONH, 2-CN, 3-CN, 4-CN, 4-(CH3)2N, 4-(C2H5)2N) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r1) for the monomers is 4-C6H5CH2O (6.39) > 2-C6H5CH2O (2.06) > 3-CH3CO (1.86) > 3-C6H5CH2O (1.78) > 4-CH3COO (1.58) > 3-CN (1.47) > 4-CN (1.21) > 4-(C2H5)2N (1.19) > 4-(CH3)2N (1.18) > 2-CN (1.04) > 4-CH3CO (0.71) > 4-CH3CONH (0.63). Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (3.6–9.5% wt), which then decomposed in the 500–800°C range. 相似文献
15.
Gregory B. Kharas Wellington M. B. Barros Katherine E. Ackerman Alexa Chanos Brendan M. Comuzzie Remy Dalloul 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(10):605-609
Novel trisubstituted ethylenes, ring-substituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is 2-C6H5CH2O, 3-C6H5CH2O, 4-C6H5CH2O, 4-CH3COO, 3-CH3CO, 4-CH3CONH, 2-CN, 3-CN, 4-CN, 4-(CH3)2N, 4-(C2H5)2N) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (2.7–8.6% wt.), which then decomposed in the 500–800°C range. 相似文献
16.
Gregory B. Kharas Hui Feng Isma S. Shouib Connie Tong Andrew Tsang Darcy Velazquez 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(1):1-5
Novel trisubstituted ethylenes, ring-disubstituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C4H9 (where R is 2-bromo-5-methoxy, 3-bromo-4-methoxy, 5-bromo-2-methoxy, 2-chloro-3-methoxy, 3-chloro-4-methoxy, 2-chloro-6-methyl, 3-chloro-4-methyl, 2-fluoro-4-methoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200-500ºC range with residue (1-6% wt.), which then decomposed in the 500–800ºC range. 相似文献
17.
Gregory B. Kharas Hui Feng Lauren P. Bejcek Erica A. Binelli Sara J. Brathwaite Jessica Carlson 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(1):6-10
Novel trisubstituted ethylenes, phenoxy ring-substituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH = C(CN)CO2C4H9 (where R is 2-(4-chlorophenoxy), 3-(4-chlorophenoxy), 4-(3-chlorophenoxy), 4-(4-chlorophenoxy), 4-(4-fluorophenoxy), 2-(3-methoxyphenoxy), 2-(4-methoxyphenoxy), 3-(4-methoxyphenoxy), 4-(4-methoxyphenoxy), 3-(4-methylphenoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200-500°C range with residue (3.1-6.5% wt), which then decomposed in the 500-800°C range. 相似文献
18.
Gregory B. Kharas Amanda M. Claro Youya Gao Jay S. Bhanot Paulina Bosek Timothy R. Corwin 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(10):595-599
Trisubstituted ethylenes, alkyl ring-substituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-i-propyl, 4-butyl, 4-i-butyl, 4-t-butyl) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2–4% wt.), which then decomposed in the 500–800°C range. 相似文献
19.
Gregory B. Kharas Valeria A. Sloan-Lyon Jason D. Grannum Mark B. Gudger Mirlinda L. Isai Lauren A. Kopczynski 《高分子科学杂志,A辑:纯化学与应用化学》2016,53(11):659-663
Novel trisubstituted ethylenes, halogen ring-substituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH ? C(CN)CO2C3H7 (where R is 2-Br, 3-Br, 4-Br, 2-Cl, 3-Cl, 4-Cl, 2-F, 3-F, 4-F were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (0.9–4.7% wt.), which then decomposed in the 500–800°C range. 相似文献
20.
Gregory B. Kharas Eric S. Molina Brittany M. Fitzpatrick Mathew C. Francis Christopher Gallardo Jessica L. Gehle 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(4):370-374
Electrophilic trisubstituted ethylenes, ring-disubstituted ethyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C2H5 (where R is 3-Br-4-CH3O, 5-Br-2-CH3O, 3-F-2- CH3, 3-F-4-CH3, 4-F-2-CH3, 4-F-3-CH3, 5-F-2-CH3, 2-Cl-5-NO2, 2-Cl-6-NO2, 4-Cl-3- NO2) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-disubstituted benzaldehydes and ethyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 5-Br-2-CH3O (1.02) > 4-Cl-3-NO2 (0.93) > 3-F-4-CH3 (0.81) > 2-Cl-6-NO2 (0.77) > 2-Cl-5-NO2 (0.71) > 3-Br-4-CH3O (0.66) > 4-F-3-CH3 (0.60) > 3-F-2-CH3 (0.38) > 4-F-2-CH3 (0.31) > 5-F-2-CH3 (0.16). Relatively high Tg of the copolymers in comparison with that of polystyrene indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2–26% wt.), which then decomposed in the 500–800°C range. 相似文献