首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

2.
This paper investigates the possibility of improving the mechanical and thermal properties of epoxy and unsaturated polyester toughened epoxy resins through the dispersion of octadecyl ammonium ion-exchanged montmorillonite (organoclay) through exfoliated mechanism. The nanocomposites prepared are characterized for their structural change and studied for their crystallite size, mechanical, thermal and water absorption (hydrophilicity) properties. The mechanical data indicates significant improvement in the flexural and tensile properties over the neat epoxy and UP-epoxy matrix according to the percentage content of organoclay. The thermal behavior too shows noticeable enhancement in glass transition temperature T g and high thermal stability. Hydrophilicity of all the composites decreases irrespective of the concentration of organoclay on the epoxy and UP-epoxy matrices. The homogeneous morphology of epoxy and UP toughened epoxy nanocomposite hybrid systems is ascertained using scanning electron microscope (SEM). X-ray results point out that the cetyl ammonium modified clay filled composites exhibited the exfoliated structure.  相似文献   

3.
The extent of organo-modified clay (C93A) platelets dispersion in polymer matrix and crystallization and melting behavior of iPP-based nanocomposites prepared by a single-step melt-mixing method were investigated by wide-angle X-ray diffraction (WAXD), transmission (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). WAXD patterns revealed exfoliated structure of nanocomposites containing 1 wt% clay, and mixed intercalated/exfoliated structure at higher concentration of nanoclay. The isothermal crystallization proceeds faster in the matrix polymer (iPP/PP-g-MA) than in nanocomposite samples. The results obtained for T m o suggest that the presence of nanoclay has induced a perfection of the formed crystals. The presence of C93A particles in PP leads to increase in crystallization peak temperature implying nucleating ability of clay particles, which was more pronounced in exfoliated than in mixed intercalated/exfoliated system.  相似文献   

4.
In this paper the effect of different organoclays on the structure and the rheological properties of poly(butyleneterephtalate)–clay nanocomposites produced by melt compounding was investigated. The study was carried out using as nanometric fillers four commercial montmorillonites, treated with different organic modifiers and having similar interlayer spacing and organo-modifier concentration. Each organoclay was melt compounded with PBT (at 3%, 6% and 9% by weight of clay) using a twin screw extruder. Using the same processing conditions, hybrid samples containing the unmodified silicate were also prepared for comparison purposes. All the obtained nanocomposite samples were submitted to physico-chemical (XRD, TEM and FT-IR), and rheological measurements in order to evidence the role of polymer-clay affinity on the morphology and on the viscoelastic response of the materials. The results have pointed out that, with the used processing conditions, all nanocomposites exhibit a mixed intercalated/exfoliated structure; nevertheless, the clay dispersion homogeneity and the exfoliation level reached in the samples are higher for Nanofil 919 and Dellite 43B fillers, the organic modifiers of which may favorably interact with PBT matrix.  相似文献   

5.
Novel epoxy‐clay nanocomposites have been prepared by epoxy and organoclays. Polyoxypropylene triamine (Jeffamine T‐403), primary polyethertriamine (Jeffamine T‐5000) and three types of polyoxypropylene diamine (Jeffamine D‐230, D‐400, D‐2000) with different molecular weight were used to treat Na‐montmorillonite (MMT) to form organoclays. The preparation involves the ion exchange of Na+ in MMT with the organic ammonium group in Jeffamine compounds. X‐ray diffraction (XRD) confirms the intercalation of these organic moieties to form Jeffamine‐MMT intercalates. Jeffamine D‐230 was used as a swelling agent for the organoclay and curing agent. It was established that the d001 spacing of MMT in epoxy‐clay nanocomposites depends on the silicate modification. Although XRD data did not show any apparent order of the clay layers in the T5000‐MMT/epoxy nanocomposite, transmission electron microscopy (TEM) revealed the presence of multiplets with an average size of 5 nm and the average spacing between multiplets falls in the range of 100 Å. The multiplets clustered into mineral rich domains with an average size of 140 nm. Scanning electron microscopy (SEM) reveals the absence of mineral aggregate. Nanocomposites exhibit significant increase in thermal stability in comparison to the original epoxy. The effect of the organoclay on the hardness and toughness properties of crosslinked polymer matrix was studied. The hardness of all the resulting materials was enhanced with the inclusion of organoclay. A three‐fold increase in the energy required for breaking the test specimen was found for T5000‐MMT/epoxy containing 7 wt% of organoclay as compared to that of pure epoxy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A pristine clay (Na+‐montmorillonite (MMT) and three different organoclays (20A‐MMT, vinylbenzyl dimethyldodecyl ammonium (VDA)‐MMT, and siloxane diamine ammonium (SDA)‐MMT) that originated from the pristine clay were used to prepare polyester‐acrylate (PEA)/clay nanocomposites by in situ ultraviolet (UV)‐curing. Except for the commercial organoclay (20A‐MMT), VDA‐MMT, and SDA‐MMT were prepared in this study by ion exchange method. The effects of organic modifications of the pristine clay on the UV‐curing behavior and structure of the nanocomposite system were investigated. The organic modifications of the clay affected considerably the UV‐curing behavior and structure of the nanocomposite system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Exfoliated nylon‐11/layered silicate nanocomposites were prepared via in situ polymerization by dispersing organoclay in 11‐aminoundecanoic acid monomer. The original clay was modified by a novel method with 11‐aminoundecanoic acid. In situ Fourier transform infrared spectroscopy results show that stronger hydrogen bonds exist between nylon‐11 and organoclay than that of between nylon‐11 and original clay. The linear dynamic viscoelasticity of organoclay nanocomposites was investigated. Before taking rheological measurements, the exfoliated and intercalating structures and the thermal properties were characterized using X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results show that the clay was uniformly distributed in nylon‐11 matrix during in situ polymerization of clay with 4 wt % or less. The presence of clay in nylon‐11 matrix increased the crystallization temperature and the thermal stability of nanocomposites prepared. Rheological properties such as storage modulus, loss modulus, and relative viscosity have close relationship with the dispersion favorably compatible with the organically modified clay. Comparing with neat nylon‐11, the nanocomposites show much higher dynamic modulus and stronger shear thinning behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2161–2172, 2006  相似文献   

8.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

9.
Polylactide (PLA)/clay nanocomposites have been prepared by in situ ring-opening polymerization in supercritical carbon dioxide. Depending on the type of organoclay used, polylactide chains can be grafted onto the clay surface, leading to an exfoliated morphology. Nanocomposites with high clay contents (30-50 wt.%), called masterbatches, have also been successfully prepared and were recovered as fine powders thanks to the unique properties of the supercritical fluid. Dilution of these masterbatches into commercial l-polylactide by melt blending has led to essentially exfoliated nanocomposites containing 3 wt.% of clay. The mechanical properties of these materials have been assessed by flexion and impact tests. Significant improvements of stiffness and toughness have been observed for the PLA/clay nanocomposites compared to the pure matrix, together with improved impact resistance.  相似文献   

10.
In this study, a series of polymer–clay nanocomposite materials, consisting of organosoluble poly(amide-imide) (PAI) matrix and dispersed nanolayers of inorganic montmorillonite clay, were successfully prepared by solution dispersion technique. At first, the reactive organoclay was prepared by using protonated l-isoleucine amino acid as a swelling agent for silicate layers of Cloisite Na+. Then, organosoluble PAI containing isoleucine amino acid was synthesized through step-growth polymerization reaction of N,N′-(pyromellitoyl)-bis-isoleucine diacid and 2-(3,5-diaminophenyl)-benzimidazole under green condition using molten tetrabutylammonium bromide. This polymer was end-capped with amine end groups near the completion of the reaction to interact chemically with acidic group of organoclay. Finally, PAI/organoclay nanocomposite films containing 2%, 5%, 10%, and 15% of organoclay were prepared via solution intercalation method through blending of organoclay with the PAI solution. Dispersion of the modified clay in the PAI matrix resulted in a nanostructured material containing intercalated polymer between the silicate layers. Structures of exfoliation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Thermogravimetric analysis data indicated that the addition of organoclay into the PAI matrix increased the thermal decomposition temperatures of the obtained nanocomposites compared to the pure PAI.  相似文献   

11.
The thermomechanical properties, morphology, and gas permeability of hybrids prepared with three types of organoclays were compared in detail. Hexadecylamine–montmorillonite (C16–MMT), dodecyltrimethyl ammonium bromide–montmorillonite (DTA‐MMT), and Cloisite 25A were used as organoclays in the preparation of nanocomposites. From morphological studies using transmission electron microscopy, most clay layers were found to be dispersed homogeneously in the matrix polymer, although some clusters or agglomerated particles were also detected. The initial degradation temperature (at a 2% weight loss) of the poly(lactic acid) (PLA) hybrid films with C16–MMT and Cloisite 25A decreased linearly with an increasing amount of organoclay. For hybrid films, the tensile properties initially increased but then decreased with the introduction of more of the inorganic phase. The O2 permeability values for all the hybrids for clay loadings up to 10 wt % were less than half the corresponding values for pure PLA, regardless of the organoclay. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 94–103, 2003  相似文献   

12.
For high performance waterborne coatings usually polymer latexes with low emulsifier content are more preferred. Although polymer/clay nanocomposites offer improved properties, it is difficult to produce clay based nanocomposite latexes containing low emulsifier due to the stabilization problems especially caused by organoclays. Present study deals with the preparation of a tBA/BA/MAA ternary copolymer/clay nanocomposite containing 3 wt.% sodium montmorillonite (Na+-MMT) via seeded emulsion polymerization. Experimentally it was observed that even the usage of hydrophilic clay caused stabilization problem and a certain amount of emulsifier (>1 wt.%) was necessary to obtain stable latexes. In addition, the usage of a low molecular weight water soluble polymer as steric barrier was found to increase the stability of system. Obtained nanocomposite latex showed fine particle size diameter (127 nm) and very narrow size distribution (PDI = 0.06). The WAXD and TEM investigations indicated that a mostly exfoliated nanocomposite was obtained. Thermal analyses (DSC, DMTA and TGA) showed that there was no change at Tg of the copolymer while very high improvement was obtained for elastic modulus and a slight increase in thermal stability. According to the rheological measurements, the nanocomposite latex showed a higher low shear viscosity, a stronger shear thinning behavior and an improved physical stability in comparison to the reference latex.  相似文献   

13.
Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N‐dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free‐volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent‐casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho‐positronium lifetime (τ3), a measure of the free‐volume size, as well as the fractional free volume (fv) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I2), an index of the epoxy–clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age‐momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy–clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers.  相似文献   

14.
Nanocomposites based on biodegradable poly(?-caprolactone) organo-modified clay have been prepared by melt intercalation using a twin-screw extruder. The screw configuration developed allowed us to obtain an intercalated/exfoliated nanocomposite structure using a modified montmorillonite containing no polar groups, in contrast to previous work using mainly alkyl ammonium containing hydroxyl polar groups in poly(?-caprolactone). Montmorillonite nanocomposites were prepared using a specific extrusion profile from a 30 wt% masterbatch of organo-modified clay, which was then diluted at 1, 3 and 5%. Intercalated and/or exfoliated nanocomposites structures were assessed using rheological procedures and confirmed by transmission electron microscopy analysis. Mechanical and thermal properties were found to be strongly dependent on morphology and clay percentage. Crystallinity was only slightly affected by the clay addition. Effect of exfoliation on Young's modulus and thermal stability was investigated. Young's modulus increased significantly and onset degradation temperature measured by TGA was significantly reduced for an exfoliated nanocomposite composition containing 5 wt% organoclay.  相似文献   

15.
In this study, two types of magnetic polyurethane (PU) elastomer nanocomposites using polycaprolactone (PCL) and polytetramethylene glycol (PTMG) as polyols were synthesized by incorporating thiodiglycolic acid surface modified Fe3O4 nanoparticles (TSM‐Fe3O4) into PU matrices through in situ polymerization method. TSM‐Fe3O4 nanoparticles were prepared using in situ coprecipitation method in alkali media and were characterized by X‐ray diffraction, Fourier Transform Infrared Spectrophotometer, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The effects of PCL and PTMG polyols on the properties of the resultant PUs were studied. The morphology and dispersion of the nanoparticles in the magnetic nanocomposites were studied by Scanning Electron Microscope. It was observed that dispersion of nanoparticles in PTMG‐based magnetic nanocomposite was better than PCL‐based magnetic nanocomposite. Furthermore, the effect of polyol structure on thermal and mechanical properties of nanocomposite was investigated by Thermogravimetric Analysis and Dynamic Mechanical Thermal Analysis. A decrease in the thermal stability of magnetic nanocomposites was found compared to pure PUs. Furthermore, DMTA results showed that increase in glass transition temperature of PTMG‐based magnetic nanocomposite is higher than PCL‐based magnetic nanocomposite, which is attributed to better dispersion of TSM‐Fe3O4 nanoparticles in PTMG‐based PU matrix. Additionally, magnetic nanocomposites exhibited a lower level of hydrophilicity compared to pure PUs. These observations were attributed to the hydrophobic behavior of TSM‐Fe3O4 nanoparticles. Moreover, study of fibroblast cells interaction with magnetic nanocomposites showed that the products can be a good candidate for biomedical application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Clay organifier with propylene oxide‐capped polyethylene glycol (PEG) with amine end group (jeffamines ED600–2003) was synthesized through an ion exchange process between sodium cations in montmorillonite (MMT) and ? NH groups in ED600–2003. The d‐spacing of organoclay was found to be 1.697–1.734 nm compared to 0.96 nm of pristine MMT. Transmission electron microscopy (TEM) was used to determine the molecular dispersion of the clay within ED600. Polyurethane‐urea/montmorillonite (PUU‐MMT) nanocomposites were prepared via in situ polymerization from polyethylene glycol (PEG 400) or 1,4 butane diol (1,4 BD), toluene diisocyanate (TDI), jeffamines ED600–2003, and 1–12 wt% of organoclay. Intercalation of PUU into modified clays was confirmed by X‐ray diffraction (XRD), scanning electron microscopy, and TEM. The barrier properties were significantly reduced; however, the thermal stability was increased in the nanocomposites as compared to the pristine polymer. Nanocomposites exhibited optical clarity and solvent resistance. The mechanical properties and the glass transition temperature of PUU were improved with the addition of organoclay. The incorporation of silicate layers gave rise to a considerable increase in the storage modulus (stiffness), demonstrating the reinforcing effect of clay on the PUU matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Hybrid nanocomposite based on poly(L-lactic acid) (PLLA) employing silica (A200) and organophilic silica (R972), natural clay (NT-25) and two types of organoclay (S4 and S7) were prepared by the solution casting method. Each nanoparticle type was incorporated at two ratios (3 and 5%) relative to the polymer matrix. The nanocomposites formed were evaluated by X-ray, thermal resistance and molecular dynamic analysis, using proton spin-lattice relaxation time. The results showed that each nanoparticle type acted independently of the polymer/nanoparticle ratio in the new material. Both silica types promoted an increase in rigidity, due to the strong intermolecular forces. The natural clay did not cause any significant change in the molecular mobility of the nanocomposites, probably due to the non-affinity of the chemical structure. Therefore, both organoclays were better dispersed in the polymeric matrix, allowing good intermolecular interaction and, consequently, exfoliated and intercalated nanocomposites were formed.  相似文献   

18.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

19.
Melt intercalation of the methylsilylated organoclays with polar polymers such as SAN was examined to verify the adhesive role of guest polymeric chains between hydrophilic clay layers, so-called “glue effect” on intercalation behavior. Once methylsilylated organoclay was melt-blended with SAN, it was found that the mixture presented significant retardation of increase of interlayer spacing, d001 with heating time, and a noticeable decrease of d001 after the methylsilylation of organoclay, implying that the diffusion of SAN was highly suppressed by the decrease of polar interaction force caused by conversion of OH to methylsiloxyl groups. However, when applying shear force for the methylsilylated organoclay/SAN nanocomposites during melt intercalation, a noticeable increase of d001 was observed, expressing that intercalation of clay by SAN occurred much more effectively because of the reduction of gluing force between host clay and guest polymers, which was well supported by dramatic improvements of mechanical properties after methylsilylation of organoclays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2367–2372, 2004  相似文献   

20.
剥离型硅橡胶/黏土纳米复合材料研究   总被引:10,自引:0,他引:10  
利用层状硅酸盐制备有机 无机纳米复合材料是当前人们研究的热点[1,2 ] ,这类材料具有较常规聚合物 无机填料复合材料无法比拟的优点 ,可以明显改善高分子材料的物理机械性能、热稳定性、气体阻隔性、阻燃性、导电性、光学性等 .一般来说 ,聚合物 层状硅酸盐 (Polymerlayeredsilicate ,PLS)纳米复合材料可分为插层型和剥离型两种类型 .插层型纳米复合材料即聚合物插入到硅酸盐层中 ,硅酸盐在近程仍保持原有的有序晶体结构 ,在远程则是无序的 .对弹性体而言 ,硅酸盐含量在插层型杂化材料中的含量比较高 ,力学性能…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号