首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚乳酸/蒙脱土纳米复合材料的结构和热性能   总被引:6,自引:0,他引:6  
聚乳酸/蒙脱土纳米复合材料的结构和热性能;聚乳酸;蒙脱土;纳米复合材料;插层  相似文献   

2.
Summary: The study of the structure and the rheological properties of poly(propylene) (PP)/montmorillonite (MMT)/maleinated PP (MAPP) composites strongly suggests that a silicate network may form under certain conditions. Network formation could not be proven unambiguously with the usual techniques, i.e., with TEM and by plotting the frequency dependence of viscoelastic properties. Cole‐Cole plots detect the network very sensitively. A certain number of silicate layers are needed to create a house‐of‐cards structure. A threshold concentration of MAPP exists in the investigated system, which depends on the silicate content.

Cole‐Cole representation of the viscoelastic properties of PP/OMMT/MAPP nanocomposites.  相似文献   


3.
Nanocomposites constituted by neat or opportunely toughened polybuthylene terephtalate filled with a commercial organoclay (Somasif™MEE) were analysed to asses their potential use in the automotive field. In particular, hybrid systems including 3–6% by weight of MEE, in presence or not of a toughening agent such as an engineering thermoplastic elastomer (Pibiflex), and obtained by melt intercalation were considered. All materials were characterised in terms of dynamic- mechanical properties. Results clearly proved that the optimization of the formulation composition allows to achieve a considerable improvement of the ultimate damping performances.  相似文献   

4.
In this study, biodegradable poly(caprolactone) (PCL) hybrids with two types of organoclays: Cloisite 30B (30B) and Cloisite 93A (93A) have been prepared by melt mixing and their barrier performance to air permeation and mechanical properties were investigated. The hybrids of PCL/30B were found to be nanocomposites resulted from the strong interaction between organic modifier of 30B and PCL and those of PCL/93A were microcomposites. The barrier performance of PCL/30B nanocomposite film to air permeation was much more improved than pure PCL and PCL/93A microcomposites at low organoclay concentration. With the increase of organoclay content the permeability coefficient was also increased that could attributed to the extra tortuous pathway for gas permeation caused by organoclay exfoliation. The barrier behaviour of PCL/30B nanocomposites could be approximately described by a theoretical model developed for composites. The mechanical properties measurements showed that the reinforcement of organoclay 30B in nanocomposites is more significant than 93A in microcomposites. Both tensile modulus and tensile strength were increased in PCL/30B nanocomposites even at at low amount of organoclay without much loss of strain at break as compared to pure PCL. The significant improvements in both barrier and mechanical properties in PCL nanocomposites could be attributed to the fine dispersion state of organoclay 30B platelets in PCL matrix and the strong interaction between organic modifier of 30B and matrix molecules.  相似文献   

5.
熔融法制备EVA/OMMT纳米复合材料及其热性能和动态力学性能;乙烯-醋酸乙烯酯共聚物;蒙脱土;动态储能模量  相似文献   

6.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

7.
Poly(3-hydroxybutyrate)/Cloisite30B (PHB/30B) nanocomposites were prepared by solution-intercalation method. The influence of 30B content on the thermal stability of PHB was investigated. With the addition of 3 wt. % of 30B the highest thermal stability of PHB was achieved. The kinetic analysis of the non-isothermal degradation was performed using the isoconversional Friedman method and invariant kinetic parameters method.  相似文献   

8.
聚氧乙烯(PEO)/粘土纳米复合材料.因为粘土的介入而具有更高的导电性、机械、热和界面稳定性,在电化学领域展现出了广泛的应用前景。本文对近十年来该材料的制备方法、插层结构、导电性、形态学以及流变学等研究进行了综述。  相似文献   

9.
The synthesis of MMT and poly(o-anisidine) (MMT/POA) clay nanocomposites was carried out by using the chemical oxidative polymerization of POA and MMT clay with POA, respectively. By maintaining the constant concentration of POA, different percentage loads of MMT clay were used to determine the effect of MMT clay on the properties of POA. The interaction between POA and MMT clay was investigated by FTIR spectroscopy, and, to reveal the complete compactness and homogeneous distribution of MMT clay in POA, were assessed by using scanning-electron-microscope (SEM) analysis. The UV–visible spectrum was studied for the optical and absorbance properties of MMT/POA ceramic nanocomposites. Furthermore, the horizontal burning test (HBT) demonstrated that clay nanofillers inhibit POA combustion.  相似文献   

10.
Poly(methyl methacrylate) (PMMA) nanocomposites containing (methacryloxy)propyl polyhedral oligomeric silsesquioxane (methacryl‐POSS) were prepared by bulk‐polymerization process. The structures of the products were characterized by FTIR, solid‐state NMR, TEM, XRD, DSC, TGA, XPS and UV‐Vis spectra. The hybrid materials were found to be largely homogeneous. DSC and TGA results indicate that the thermal properties of PMMA nanocomposites are significantly improved. The glass transition temperature (Tg) and thermal decomposition temperature (Tdec) of the nanocomposites increased by 58 and 110°C, respectively. The bulk hybrid material maintains excellent optical transparency in visible region.  相似文献   

11.
The crystalline structures, morphologies, and mechanical properties of poly(vinylidene fluoride)/clay nanocomposites were studied using X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), polarized optical microscopy(POM), and tensile tests. The results of XRD and TEM show that organoclays are dispersed in the poly(vinylidene fluoride)(PVDF) matrix. A clay-induced crystal transformation from α-phase to β-phase of PVFD was confirmed by XRD and FTIR. Clay layers restricted the growth of spherulite. The tensile tests indicate that the tensile modulus and yield strength as well as the elongation at break decrease when clay is loaded.  相似文献   

12.
Photo‐ and thermal stabilities of poly(propylene) (PP)/SiO2 nanocomposites were studied by varying the particle size of the SiO2 nanoparticles. It was found that smaller SiO2 nanoparticles improved the stabilities of the nanocomposites by depressing the size of spherulites. The phenomenon was successfully explained within the infectious spreading model, where the spatial spreading of oxidation was delayed at the interfacial region between the spherulites.

  相似文献   


13.
Summary: Thermal properties of nanocomposites prepared of poly(L-lactide) (PLLA) and CaCO3 applying differential scanning (DSC) calorimetry and thermogravimetry (TG) were studied. Nanocomposites were prepared by extrusion process at 170 °C. DSC measurements show that CaCO3 has no influence on glass transition and melting point of PLLA but lowers its cold crystallization temperature. There is no difference in glass transition temperature of PLLA before and after extrusion. High temperature thermal stability of the PLLA in the composites is poorer than neat PLLA. Kinetic parameters also indicate greater reactivity of the system upon CaCO3 addition.  相似文献   

14.
Polyethylene and polypropylene nanocomposites were investigated with focus on mechanical and barrier properties. Structure was observed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Four types of nano-filler were used: Nanofil 5, 8, 9 and 3000. In case of polyethylene nanocomposites the dispersion and intercalation was to low extent. Mechanical and barrier properties were worse compared to pure PE. In case of polypropylene with Nanofil 5, 9 and 3000 tensile strength was better compared to pure PP. Also PP with Nanofil 9 and 3000 had better barrier properties than pure PP for both O2 and CO2. This was explained by better intercalation and dispersion of the filler documented by XRD measurement and TEM observation.  相似文献   

15.
Summary: Physico‐chemical interactions between hydrophobic polyolefin materials and hydrophilic inorganic nanoparticles such as surface‐hydroxylated SiO2 have not been well understood so far. In this study, the effects of particle size and content of SiO2 nanoparticles on isothermal growth rate of PP spherulites in various PP/SiO2 nanocomposites were investigated by polarized optical microscopy. It was unexpected to find that hydrophilic SiO2 nanoparticles can be homogeneously dispersed in a PP matrix. Spherulite growth rates of PP in PP/SiO2 nanocomposites decrease significantly with increasing SiO2 content and decreasing particle size. Most interestingly, the spherulite growth rate was zero for PP/16 nm‐SiO2 nanocomposites with SiO2 content above 2.5 wt.‐% resulting in a highly transparent film.

Photographs of 200 µm‐thick PP and PP/16 nm‐SiO2 (5 wt.‐%) sheets in front of a graphic pattern.  相似文献   


16.
Summary: Poly(propylene)/monoalkylimidazolium‐modified montmorillonite (PP/IMMT) nanocomposites were prepared by in situ intercalative polymerization of propylene with TiCl4/MgCl2/MMT catalyst. The PP synthesized possessed high isotacticity and molecular weight. Both wide‐angle X‐ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the nanocomposite formation with exfoliated MMT homogeneously distributed in the PP matrix. A thermal stability study revealed that the nanocomposites possess good thermal stability.

X‐ray diffraction patterns of PP/IMMT (MMT = 2.2 wt.‐%) nanocomposite before and after processing.  相似文献   


17.
The poly(vinyl chloride) based nanocomposites with 3.0% weight content of the photo-active zinc oxide (ZnO) nanoparticles or the photo-inert calcium carbonate (CaCO3) nanoparticles was prepared by the solution mixing method, respectively. Their photo-oxidative degradation under ultraviolet irradiation (365 nm) at room temperature were compared with the pure poly(vinyl chloride) via Fourier transform infrared spectroscopy, Thermogravimetric analysis and x-ray photoelectron spectroscopy analyses. The results showed that the photo-inert calcium carbonate (CaCO3) nanoparticles hampered the photo-degradation of poly(vinyl chloride), whereas the photoactive zinc oxide (ZnO) nanoparticles accelerated the photodegradation of poly(vinyl chloride). Furthermore, the ZnO nanoparticles also favored the crosslinking reaction of the dehydrochlorinated poly(vinyl chloride).  相似文献   

18.
通过两步法将2,3-环氧丙基三甲基氯化铵接枝壳聚糖合成了水溶性壳聚糖季铵盐(HTCC),以其为插层剂对稀有的新疆皂石(Saponite)黏土矿物进行有机改性,制备了壳聚糖季铵盐皂石(HTCC-saponite),并以其为助剂,以丙交酯为单体,通过原位插层聚合法制备了聚乳酸(PLA)/HTCC-saponite纳米复合材料.最优化合成条件:聚合反应温度150℃,辛酸亚锡加量2%(质量分数),HTCC-saponite加量1%(质量分数)、聚合反应时间16 h.微观结构分析表明HTCC-saponite具有插层与剥离共存的结构.采用X射线衍射(XRD)、透射电子显微镜(TEM)、热重分析(TG-DTG)和差示扫描量热仪(DSC)等对PLA/HTCC-saponite纳米复合材料的微观结构、形貌及热稳定性进行了表征和分析.结果表明,HTCC-saponite有效改善了PLA的结晶性能,提高PLA的热稳定性.抗菌测试结果表明,HTCC-saponite具有良好的抗菌性,并赋予PLA/HTCC-saponite复合材料较强的抑菌能力.  相似文献   

19.
聚丙烯酸/聚丙烯酰胺水溶液复合特性的研究   总被引:1,自引:0,他引:1  
通过酸度、电导率、粘度、接触角的测定,研究了聚丙烯酸 (PAA) /聚丙烯酰胺 (PAM) 水溶液复合物及复合物膜的结构和性能。结果表明,酸度、温度、浓度和复合比影响PAA/PAM的复合水溶液中大分子链的构象和流体力学体积,适度的氢键作用可以形成均相的复合溶液。经过热处理和未经热处理的聚合物膜表现出了不同的亲水性能。  相似文献   

20.
Highly exfoliated poly(propylene) (PP)/clay nanocomposites with obvious improvements in both the tensile strength and toughness have been prepared by a novel TiCl4/MgCl2/imidazolium‐modified montmorillonite (IOHMMT) compound catalysts. Through this approach, in situ propylene polymerization can actually take place between the silicate layers and lead not only to PP with a high isotacticity and molecular weight, but also to a highly exfoliated structure even at high clay content levels (as high as 19 wt.‐%).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号