共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Maria A. Lebedeva Dr. Thomas W. Chamberlain Dr. E. Stephen Davies Dr. Dorothée Mancel Bradley E. Thomas Dr. Mikhail Suyetin Dr. Elena Bichoutskaia Prof. Dr. Martin Schröder Prof. Dr. Andrei N. Khlobystov 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(36):11999-12008
A covalently‐linked salen–C60 (H2L) assembly binds a range of transition metal cations in close proximity to the fullerene cage to give complexes [M(L)] (M=Mn, Co, Ni, Cu, Zn, Pd), [MCl(L)] (M=Cr, Fe) and [V(O)L]. Attaching salen covalently to the C60 cage only marginally slows down metal binding at the salen functionality compared to metal binding to free salen. Coordination of metal cations to salen–C60 introduces to these fullerene derivatives strong absorption bands across the visible spectrum from 400 to 630 nm, the optical features of which are controlled by the nature of the transition metal. The redox properties of the metal–salen–C60 complexes are determined both by the fullerene and by the nature of the transition metal, enabling the generation of a wide range of fullerene‐containing charged species, some of which possess two or more unpaired electrons. The presence of the fullerene cage enhances the affinity of these complexes for carbon nanostructures, such as single‐, double‐ and multiwalled carbon nanotubes and graphitised carbon nanofibres, without detrimental effects on the catalytic activity of the metal centre, as demonstrated in styrene oxidation catalysed by [Cu(L)]. This approach shows promise for applications of salen–C60 complexes in heterogeneous catalysis. 相似文献
3.
Hisanori Shinohara 《Chemical record (New York, N.Y.)》2012,12(3):296-305
With the advent of the Krätschmer‐Huffman historical breakthrough on the macroscopic synthesis of C60 in the late summer of 1990, I decided to stop all my research so far in the area of spectroscopy of gas‐phase molecular microclusters. Since then, my odyssey in and quest for the so‐called nanocarbons started. Thanks to the brand‐new and enchanting world of fullerenes, metallofullerenes, carbon nanotubes and nano‐peapods, I have been able to entertain (and still am entertaining!) “the pleasure of finding things out”, as Richard Feynman once put it in an interview by a BBC television program in 1981. I believe that as long as one has big dreams and lays the groundwork for the dreams, one will achieve them. My quest for nanocarbons is still on its way. DOI 10.1002/tcr.201100037 相似文献
4.
Guowen Meng Prof. Fangming Han Dr. Xianglong Zhao Dr. Bensong Chen Dr. Dachi Yang Dr. Jianxiong Liu Prof. Qiaoling Xu Dr. Mingguang Kong Xiaoguang Zhu Yung Joon Jung Prof. Yajun Yang Dr. Zhaoqin Chu Min Ye Swastik Kar Dr. Robert Vajtai Dr. Pulickel M. Ajayan Prof. 《Angewandte Chemie (International ed. in English)》2009,48(39):7166-7170
5.
Synthesis of Cationic Dumbbell-shaped Fullerene Nanostructures as Potential Photodynamic Sensitizers
A design of novel hydrophilic tetracationic dumbbell-shaped [60]fullerene nanostructures was made by balancing the hydrophilicity and hydrophobicity characteristics of the fullerene adduct for their potential application as photodynamic sensitizers in the PDT treatment. A sequential protection-deprotection reaction pathway was applied for the functional differentiation between primary and secondary amine moieties of pentaethylene hexamine. Synthesis of the target molecule involves two key steps of unsymmetrical esterification and amidation of malonic acid and subsequent fullerenation. The synthetic strategy was accomplished using mild reaction conditions in the intermediate molecule preparation and led a moderate overall product yield. 相似文献
6.
De‐Li Chen Dr. Wei Quan Tian Prof. Dr. Ji‐Kang Feng Prof. Chia‐Chung Sun Prof. 《Chemphyschem》2008,9(3):454-461
The complete set of 6332 classical isomers of the fullerene C68 as well as several non‐classical isomers is investigated by PM3, and the data for some of the more stable isomers are refined by the DFT‐based methods HCTH and B3LYP. C2:0112 possesses the lowest energy of all the neutral isomers and it prevails in a wide range of temperatures. Among the fullerene ions modeled, C682?, C684? and C686?, the isomers C682?(Cs:0064), C684?(C2v:0008), and C686?(D3:0009) respectively, are predicted to be the most stable. This reveals that the pentagon adjacency penalty rule (PAPR) does not necessarily apply to the charged fullerene cages. The vertical electron affinities of the neutral Cs:0064, C2v:0008, and D3:0009 isomers are 3.41, 3.29, and 3.10 eV, respectively, suggesting that they are good electron acceptors. The predicted complexation energy, that is, the adiabatic binding energy between the cage and encapsulated cluster, of Sc2C2@C68(C2v:0008) is ?6.95 eV, thus greatly releasing the strain of its parent fullerene (C2v:0008). Essentially, C68 fullerene isomers are charge‐stabilized. Thus, inducing charge facilitates the isolation of the different isomers. Further investigations show that the steric effect of the encaged cluster should also be an important factor to stabilize the C68 fullerenes effectively. 相似文献
7.
Diels‐Alder cycloaddition reaction is useful for generation of covalent derivatives of fullerenes. Diels‐Alder reactions of C70 and dienes usually take place at the carbon‐carbon bond that has a short bond length in C70, while the bonds with long lengths are generally unreactive. In this paper, we investigated the reactivities of Li+@C70 and Li@C70 toward Diels‐Alder reactions with cyclohexadiene by means of density functional theory calculations. We found that the thermodynamic and kinetic reactivities of the fullerene cage are changed significantly after the encapsulation of the lithium ion or atom. The encapsulated lithium ion causes a remarkable decrease of the activation barrier for the cycloaddition reaction, which can be ascribed to the enhanced orbital interaction between cyclohexadiene and the fullerene cage. The unreactive bond with a long length in C70 is activated efficiently after the encapsulation of the lithium atom. According to the activation‐strain model analysis, the improved reactivity of the long bond is associated with the small deformation energy and large interaction energy of the reactants. Unlike conventional Diels‐Alder reactions that proceed through concerted mechanism, the reaction of Li@C70 and cyclohexadiene undergoes an unusual stepwise mechanism because of the open‐shell electronic structure of Li@C70. 相似文献
8.
内嵌金属富勒烯的笼外化学修饰 总被引:1,自引:0,他引:1
内嵌金属富勒烯以其独特的结构和新奇的性质吸引了众多科学家的目光,对它们进行笼外化学修饰是最近十年来新兴的研究热点,这对于考察内嵌金属富勒烯的结构及化学物理性质并拓宽其应用范围具有重要意义。本文将内嵌金属富勒烯与各种底物的不同作用分类,以反应类型为线索,详细概括了已发表的内嵌金属富勒烯的各种笼外化学反应,包括各种环化反应、内嵌金属富勒烯与杯芳烃及冠醚的自组装、单键相连的衍生物、水溶性衍生物以及用内嵌金属富勒烯填充碳纳米管等。在对各种化学反应阐述的同时,对内嵌金属富勒烯的可能应用也进行了总结,并提出了自己的看法。 相似文献
9.
Marc Rudolf Dr. Silke Wolfrum Prof. Dr. Dirk M. Guldi Dr. Lai Feng Dr. Takahiro Tsuchiya Prof. Dr. Takeshi Akasaka Prof. Dr. Luis Echegoyen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(17):5136-5148
In recent years, endohedral metallofullerenes have attracted tremendous interest not only in physics and chemistry, but also in interdisciplinary areas, such as materials and biological sciences. In this concept article we highlight recent results on different endohedral metallofullerenes based on lanthanides and their derivatives. The chemical and excited state reactivities of endohedral metallofullerenes are discussed for various endohedral clusters. Most important is the part that covers spectroscopic and kinetic assays of reductive and oxidative charge transfer evolving from photoexcited electron donors and electron acceptors, respectively, in a variety of electron donor–acceptor conjugates. Towards this end, we refer to the applications of endohedral metallofullerenes in photovoltaic devices that feature greater efficiency than devices fabricated with empty fullerenes. Herein, we focus mainly on results obtained in the groups of Akasaka, Echegoyen, and Guldi. 相似文献
10.
硼元素,作为第三主族中唯一非金属元素,其原子具有特殊的缺电子性质,因而产生了复杂的键合机制。从硼原子之间的双中心-双电子键到平衡体系电子分布的多中心双电子键,硼因此具有多种同素异形体。低维硼纳米结构材料具有不同于体相的独特结构及特殊性质,相关理论和实验研究已成为近年来的研究热点。本文从理论和实验两个方面,系统介绍了零维硼团簇到一维硼纳米管、硼纳米线及二维硼纳米结构的相关研究,主要针对其结构、性质与潜在应用进行综述。目前,仍需系统化探索其制备及稳定等相关问题,力求揭示其固有属性,以发挥硼基纳米结构材料在未来纳米器件和能源催化方面的重要应用。 相似文献
11.
Ivan Guryanov Dr. Francesca Maria Toma Dr. Alejandro Montellano López Dr. Mauro Carraro Dr. Tatiana Da Ros Dr. Guido Angelini Dr. Eleonora D'Aurizio Dr. Antonella Fontana Prof. Michele Maggini Prof. Maurizio Prato Prof. Marcella Bonchio Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(46):12837-12845
The effect of microwave (MW) irradiation and ionic liquids (IL) on the cycloaddition of azomethine ylides to [60]fullerene has been investigated by screening the reaction protocol with regard to the IL medium composition, the applied MW power, and the simultaneous cooling of the system. [60]Fullerene conversion up to 98 % is achieved in 2–10 min, by using a 1:3 mixture of the IL 1‐methyl‐3‐n‐octyl imidazolium tetrafluoroborate ([omim]BF4) and o‐dichlorobenzene, and an applied power as low as 12 W. The mono‐ versus poly‐addition selectivity to [60]fullerene can be tuned as a function of fullerene concentration. The reaction scope includes aliphatic, aromatic, and fluorous‐tagged (FT) derivatives. MW irradiation of IL‐structured bucky gels is instrumental for the functionalization of single‐walled carbon nanotubes (SWNTs), yielding group coverages of up to one functional group per 60 carbon atoms of the SWNT network. An improved performance is obtained in low viscosity bucky gels, in the order [bmim]BF4> [omim]BF4> [hvim]TF2N (bmim=1‐methyl‐3‐n‐butyl imidazolium; hvim=1‐vinyl‐3‐n‐hexadecyl imidazolium). With this protocol, the introduction of fluorous‐tagged pyrrolidine moieties onto the SWNT surface (1/108 functional coverage) yields novel FT‐CNS (carbon nanostructures) with high affinity for fluorinated phases. 相似文献
12.
13.
Controllable monodisperse multiple emulsions 总被引:1,自引:0,他引:1
Chu LY Utada AS Shah RK Kim JW Weitz DA 《Angewandte Chemie (International ed. in English)》2007,46(47):8970-8974
14.
15.
16.
1-butyl-3-methylimidazolium tetrafluoroborate (an ionic liquid) is an advantageous electrolyte for the study of charge-transfer reactions at single-walled carbon nanotubes (SWCNTs) and fullerene peapods (C60@SWCNT). Compared to traditional electrolyte solutions, this medium offers a broader window of electrochemical potentials to be applied, and favorable optical properties for in situ Vis/NIR and Raman spectroelectrochemistry of nano-carbon species. The electrochemistry of both nanotubes and peapods is dominated by their capacitive double-layer charging. Vis/NIR spectroelectrochemistry confirms the charging-induced bleaching of transitions between Van Hove singularities. At high positive potentials, new optical transitions were activated in partly filled valence band. The bleaching of optical transitions is mirrored by the quenching of resonance Raman scattering in the region of tube-related modes. The Raman frequency of the tangential displacement mode of SWCNT shifts to blue upon both anodic and cathodic charging in the ionic liquid. The Raman modes of intratubular C60 exhibit a considerable intensity increase upon anodic doping of peapods. 相似文献
17.
《中国化学会会志》2017,64(11):1354-1359
High‐purity, large‐aspect‐ratio, and well‐dispersed copper nanowires (CuNWs) with an average diameter of 45 nm and length >100 μm were successfully synthesized by reducing a Cu(II) salt with glucose, with oleylamine (OM) and oleic acid (OA) serving as dual capping agents, through hydrothermal reduction. A systematic study of the effects of the copper salt, capping agents, reductant, and temperature on the morphology of CuNWs has been conducted. Our results indicate that CuNWs with different diameters can be obtained using different copper salts. The diameter of the as‐prepared CuNWs decreases with increasing amounts of OM/OA and glucose but increases with the increasing temperature of the reaction. By adjusting the experimental parameters, we could achieve controlled synthesis of CuNWs and obtain high‐quality CuNWs with different diameters of 45, 76, 85, 90, 100, 112, 135, and 175 nm. 相似文献
18.
Jun Zheng Bing‐Hui Wu Zhi‐Yuan Jiang Prof. Qin Kuang Prof. Xiao‐Liang Fang Zhao‐Xiong Xie Prof. Rong‐Bin Huang Prof. Lan‐Sun Zheng Prof. 《化学:亚洲杂志》2010,5(6):1439-1444
Porous hollow nanostructures have attracted intensive interest owing to their unique structure and promising applications in various fields. A facile hydrothermal synthesis has been developed to prepare porous hollow nanostructures of silicate materials through a sacrificial‐templating process. The key factors, such as the concentration of the free metal cation and the alkalinity of the solution, are discussed. Porous hollow nanostructures of magnesium silicate, nickel silicate, and iron silicate have been successfully prepared by using SiO2 spheres as the template, as well as a silicon source. Several yolk–shell structures have also been fabricated by a similar process that uses silica‐coated composite particles as a template. As‐prepared mesoporous magnesium silicate hollow spheres showed an excellent ability to remove Pb2+ ions in water treatment owing to their large specific surface and unique structures. 相似文献
19.
Cao B Wakahara T Maeda Y Han A Akasaka T Kato T Kobayashi K Nagase S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(3):716-720
Lanthanum endohedral metallofulleropyrrolidines have been synthesized for the first time through addition of an azomethine ylide to La@C(82)-A in toluene. It was found that the addition reaction is very efficient and, to some extent, regioselective. Two major endohedral metallofulleropyrrolidines, a monoadduct and a bisadduct of La@C(82)-A with abundance ratio of approximately 1:0.4, have been isolated by HPLC chromatography and characterized by mass spectrometry, UV/Vis-NIR absorption, and EPR spectroscopy. The electronic structure of La@C(82)-A has been modified slightly upon monoaddition and significantly upon bisaddition of the pyrrolidines. 相似文献