首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(o-toluidine) (POT) coatings were electrochemically synthesized on 304 stainless steel using cyclic voltammetric method. These coatings were characterized by Fourier transform infrared spectroscopy, UV–vis absorption spectroscopy, and cyclic voltammetry. The corrosion performance of POT coating in aqueous 3 wt% sodium chloride was assessed by the electrochemical techniques such as open circuit potential measurements, potentiodynamic polarization technique, cyclic potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. The results reveal that POT coating on 304 stainless steel prevents general and localized corrosion, and reduces the exchange current density almost by a factor of 45 than bare 304 stainless steel.  相似文献   

2.
In the present work, electropolymerized polypyrrole (PPy) films were obtained on the surface of the surgical ISO 5832-1 stainless steel. The films were obtained from solutions containing 0.1M and 0.5M of the monomer by cyclic voltammetry deposition. The correlation between the surface chemistry of the as-deposited films and the corrosion behavior of the coated substrate is explored. X-ray photoelectron spectroscopy was used to study the chemical state of the main elements in the PPy films. Electrochemical impedance spectroscopy and potentiodynamic polarization tests were employed to evaluate the corrosion resistance of the PPy-coated samples. The tests were conducted in phosphate-buffered saline solution at 37°C. The measured corrosion current densities were dependent on the doping level of the PPy film and decreased with the reduction of the doping level of the PPy layer.  相似文献   

3.
The synthesis of polyaniline coatings on the copper (Cu) surface has been investigated by using the galvanostatic method. The synthesized coatings were characterized by Fourier transform infrared spectroscopy, UV–visible absorption spectrometry and scanning electron microscopy. The anticorrosion performances of polyaniline coatings were investigated in 0.5 M HCl medium by the potentiodynamic polarization technique and electrochemical impedance spectroscopy. The corrosion rate of polyaniline‐coated Cu was found to be ~27 times lower than bare Cu, and potential corrosion increased from ?0.21 V versus Ag/AgCl for uncoated Cu to ?0.19 V versus Ag/AgCl for polyaniline‐coated Cu electrodes. Electrochemical measurements indicate that polyaniline coating has good inhibiting properties with a mean efficiency of ~96% at 10 mAcm?2 current density applied on Cu corrosion in acid media. The results of this study clearly ascertain that the polyaniline has an outstanding potential to protect Cu against corrosion in an acidic environment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The inhibition effect of 2-carboxymethylthio-4-(p-methoxyphenyl)-6-oxo-1,6-dihy-dropyrimidine-5-carbonitrile (CPD) towards the corrosion of copper was studied in aerated stagnant 3.5% NaCl at 25 °C using ac techniques include electrochemical frequency modulation and electrochemical impedance spectroscopy as well as potentiodynamic polarization measurements. Corrosion rates determined using electrochemical frequency modulation (EFM) which measures the non-linear behaviour of a corroding system are compared with corrosion rates obtained from traditional electrochemical techniques and show good agreement. Data obtained from EIS were analyzed to model the corrosion inhibition process through equivalent circuit. Polarization measurements showed that CPD acts as mixed-type inhibitor. The inhibition efficiency increases with an increase in the concentration of CPD. The adsorption of the inhibitor on the copper surface in the sodium chloride solution was found to obey Langmuir’s adsorption isotherm. A mixed inhibition mechanism is proposed for the inhibitive effects of CPD as revealed by potentiodynamic polarization technique.  相似文献   

5.
The electrochemical synthesis of poly(4-aminomethyl-5-hydroxymethyl-2-methyl pyridine-3-ol) on steel and copper electrodes was achieved in both sulfuric acid and oxalic acid by cyclic voltammetry technique. Characterization of the polymer films were achieved by Fourier transforms infrared spectroscopy technique (FTIR) and scanning electron microscope (SEM). Corrosion performance of coatings was investigated in 0.1 M H2SO4 by potentiodynamic polarization and electrochemical impedance (EIS) spectroscopy techniques.  相似文献   

6.
Protective coatings for harsh environments are always welcome, but they must overcome profound challenges, including corrosion and wear resistance. The purpose of this study is to look into the long-term potentiodynamic polarization measurements and dry tribometric behavior of plasma-sprayed amorphous coatings on AISI 1035 mild steel. To investigate the impact of unique active polarization potentials on the electrochemical studies of the iron-based amorphous layer, which compares favorably to AISI 1035 mild steel, the active potential polarization curve and friction coefficient tests were performed. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analyses were used to investigate the coating’s corrosion behavior. Their mechanical (Tribometric tests at higher sliding speeds) and chemical properties (electrochemical potentiodynamic polarization investigations) have also been thoroughly investigated. There is enough validation that these protective coatings can be used in hostile environments. The effects of long-term corrosion for 24 and 48 h were thoroughly examined. Tribometric examinations revealed that amorphous layers are highly resistant under dry conditions, as they offered a very low and stable friction coefficient less than 4 μ with micro Vickers hardness 1140 ± 22.14 HV, which is more than twice as compared to mild steel AISI 1035. The corrosion resistance of coatings in 3.5 wt % NaCl solution displays active transition characteristics of activation, passivation, over passivation, and pitting, as shown by the potentiodynamic polarization curves.  相似文献   

7.
The corrosion resistance of nickel coatings on a copper substrate, plated from low-temperature electrolytes based on acetates, tartrates, and isobutyrates, was studied by the methods of electrochemical impedance spectroscopy (EIS) and polarization curves. The tests were performed in a 0.3% NaCl solution. The nickel coatings exhibit high chemical activity, dissolving in the NaCl solution. The electrochemical step is the limiting step of the corrosion process.  相似文献   

8.
Poly(o‐anisidine) (POA) and poly(o‐anisidine)‐TiO2 (POA‐TiO2) nanocomposite coatings on aluminum alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthesized coatings were characterized by FT ‐ IR spectroscopy, XRD, SEM ‐ EDX and SEM. The corrosion protection performance of POA and POA‐TiO2 nanocomposite coatings was investigated in the 3.5% NaCl solution by using potentiodynamic polarization technique and electrochemical impedance spectroscopy. The results show that the corrosion rate of the nanocomposite coatings is about 900 times lower than the bare AA3004 under optimal conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization have been used to investigate the inhibition effect of a new pyrimidine heterocyclic derivative, namely 2-mercapto-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (MPD) on copper corrosion in 3.5% NaCl solutions at 25 ± 1 °C. The electrochemical investigations showed that MPD gives sufficient inhibition against copper corrosion in 3.5% NaCl solutions. Potentiodynamic polarization measurements have shown that the MPD inhibit both the cathodic and anodic processes and thus it classified as mixed-type inhibitor. EIS measurements indicate that the values of constant phase elements (CPEs) tend to decrease and both charge-transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration. Electrochemical kinetic parameters obtained using EFM methods were comparable with that calculated from traditional measurements (EIS and potentiodynamic polarization). Molecular simulation technique was used to investigate the adsorption configuration of MPD on copper surface. Number of electrons transferred from MPD to the copper surface was calculated by semi-empirical quantum chemical calculations.  相似文献   

10.
A new pyrimidine heterocyclic derivative, namely 2-ethylthio-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (EPD) was prepared and its inhibition performance towards copper corrosion in 3.5% NaCl solutions was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) measurements. Experimental investigations showed that EPD reduces markedly the copper corrosion in 3.5% NaCl solutions. EFM can be used as a rapid and non destructive technique for corrosion rate measurements without prior knowledge of Tafel constants. Monte Carlo simulation technique incorporating molecular mechanics and molecular dynamics can be used to simulate the adsorption of pyrimidine derivative (EPD) on the Cu (111) surface in 3.5% NaCl.  相似文献   

11.
以对甲苯磺酸钠为掺杂剂, 三氯化铁为氧化剂, 用化学氧化聚合法在AZ31 镁合金表面制备聚吡咯(PPy)膜. 采用傅里叶变换红外(FTIR)光谱分析了镁合金表面聚吡咯膜结构, 通过电化学极化曲线、电化学阻抗谱(EIS)研究了其耐蚀性能, 通过扫描电子显微镜(SEM)、X射线能量散射谱(EDS)分析了表面形貌和成分. 和镁合金裸样相比, 聚吡咯膜对镁合金腐蚀有一定的抑制作用. 硅烷预处理改善了镁合金/聚吡咯体系的耐腐蚀性能, 使腐蚀电位较镁合金裸样正移了110 mV, 电流密度减小了约2个数量级.  相似文献   

12.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

13.
In this study, electrochemical synthesis of poly(o-phenylenediamine) (PoPDA) on 316L stainless steel and its corrosion inhibition effect were studied. Electropolymerization of o-phenylenediamine (oPDA) was carried out by a potentiodynamic method using 0.5 M H2SO4 solution containing 0.05 M oPDA monomer. The corrosion protection ability of the PoPDA in 3.5 % NaCl was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, and change of open circuit potential with immersion time (EOCP ? t). The results showed that PoPDA acted as a protective layer on stainless steel against corrosion in 3.5 % NaCl solution.  相似文献   

14.
In this work we present the development of two organic–inorganic hybrid coatings with interpenetrating network for corrosion protection of tinplated steel. The hybrid coatings were obtained from the hydrolytic condensation of tetraethoxysilane and 3-methacryloxypropyltrimethoxysilane, which has a free-radical polymerizable C?C double bond. The tri-functional monomers, triallyl isocyanurate and trimethylolpropane triacrylate (TMPTMA) with three C?C double bonds, were used to develop a highly cross-linked organic network attached to the inorganic moieties through covalent Si–C bonds, respectively. Both were characterized by Fourier transformed infrared spectroscopy and thermogravimetric analysis. The corrosion resistance performance was evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy, and salt spray test. The results indicated that the Sol-TMPTMA hybrid coating exhibited excellent anti-corrosion ability by forming a physical barrier between tinplated steel substrate and its external environment.  相似文献   

15.
The corrosion behavior and surface morphology of Ni–SiC composite coatings produced by electrodeposition with the aid of magnetic field were studied. The results of the electrochemical analysis including polarization resistance and potentiodynamic polarization curves showed that a magnetic field of 0.1 T could significantly improve the corrosion resistance of the composite. The electrochemical impedance spectra revealed that a passive layer was formed on the surface of the Ni–SiC coating with the magnetic field. The microstructures of electrodeposited Ni–SiC composite coatings were also examined. More SiC particles were found to be incorporated into the coating with the presence of magnetic field, which was considered to be one of the reasons for the enhancement of corrosion resistance as SiC particles were reported to be corrosion inhibitors. Contribution to special issue “Magnetic field effects in Electrochemistry”  相似文献   

16.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) and polystyrene (PS) blend coatings on the corrosion inhibition of stainless steel in a 0.5 M NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. Stainless steel electrodes with mirror finish were coated with P3OT/PS blend by drop-casting technique. In order to study the temperature effect on the function like physical barrier against the corrosive species of P3OT/PS polymeric blend, the coatings were thermally annealed at three different temperatures (55?°C, 80?°C, and 100?°C). The corrosion behavior of P3OT/PS-coated stainless steel was investigated in 0.5 M NaCl at room temperature, by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy. The LPR values indicated that, at 100?°C, P3OT/PS coatings showed a better protection of the 304 stainless steel in 0.5 M NaCl; the corrosion rate diminished in two orders of magnitude with regard to the bare stainless steel. The superficial morphology of the coatings before and after the corrosive environment was researched by atomic force microscopy, optic microscopy, and scanning electronic microscopy. Morphological study showed that the increased temperature benefited the integration of the two polymeric phases, which improved the barrier properties of the coatings. The coating/metal adhesion and the coating thickness were evaluated. The temperature increases the adhesion degree coating/substrate; thus, the coating annealed at 100?°C showed the best adhesion.  相似文献   

17.
在Na2SiO3-KOH电解液体系中添加一定量的(NaPO3)6, 利用微弧氧化(MAO)技术在AZ91D 镁合金表面制备了原位生长的陶瓷层. 采用动电位极化和电化学阻抗谱(EIS)技术研究了添加(NaPO3)6前后, 制备的陶瓷层在3.5%(w) NaCl溶液中的室温电化学行为. 结果表明, 添加(NaPO3)6后, 陶瓷层的自腐蚀电位显著上升, 自腐蚀电流密度明显减小. 这主要是由于(NaPO3)6增加了反应过程中基体镁合金表面的“氧空位”和溶液中PO3-4的含量, 促使元素Mg在金属/膜层(M/F)界面上快速形成相应氧化物, 从而增加了陶瓷层的厚度和致密性. 根据电化学反应体系和陶瓷层的特殊结构, 建立了合理的等效电路, 并结合EIS 数据, 分析了添加(NaPO3)6提高陶瓷层耐电化学腐蚀性能的机理.  相似文献   

18.
The effect of zirconia and zirconia-polyester glycol hybrid coatings on the corrosion resistance of mechanically polished or anodized AISI 316 stainless steel (316L), was studied by potentiodynamic polarization and electrochemical impedance spectroscopy in 0.1 M NaCl and scanning electron microscope and atomic force microscopy examinations. The deposition of zirconia coatings was achieved by the sol–gel technique by immersing the samples in either the inorganic polymer or the organic–inorganic polymer mixture. From potentiodynamic and impedance measurements, the grade of protection is reduced with the exposure time to the electrolyte, which is mainly associated with lost of film adhesion and, consequently, detachment from the metal substrate. However, the uncoated anodized sample revealed an unexpected corrosion behavior; the anodic film formed during anodizing readily increased the corrosion resistance of the 316L stainless steel in 0.1 M NaCl, revealing a considerable reduction in the corrosion current density and an increase in the pitting potential.  相似文献   

19.
借助优化钛/锆基化学转化工艺,在碱性无氰镀锌层基体上获得了环保型的无铬转化膜,并与铬酸盐彩色钝化膜作对比.中性盐雾试验、动电位极化和电化学阻抗谱测试结果表明:钛/锆基化学转化膜出现白锈时间为96 h,达到铬酸盐彩色钝化膜标准,且呈现出较低的腐蚀电流和较高的极化电阻,但钝化特性不如铬酸盐彩色钝化膜明显.  相似文献   

20.
The corrosion resistance performance of poly (otoluidine) (POT)-dispersed castor oil-polyurethane, (COPU) nanocomposite coatings, POT/COPU, with three different compositions (i.e. 0.25, 0.5 and 1.0 wt%) in alkaline medium is studied. The coatings are applied on mild steel specimens by brushing. Corrosion resistance behaviour of these coatings is investigated using potentiodynamic polarization measurements, electrochemical impedance spectroscopy (EIS) and by weight loss. The morphological behaviour of corroded and uncorroded coated specimens is investigated by scanning electron microscopy (SEM). It is interesting to report that the presence of conducting polymer nanoparticles in POT/COPU coatings suppresses the saponification of COPU in an alkaline environment. These investigations show that the dispersion of POT in COPU remarkably improves the corrosion resistance performance of COPU in alkaline media. POT/COPU (1.0 wt%) coatings have potential as anticorrosive-coating materials in alkaline media at higher pH. These coatings have a higher resistance to alkaline medium in comparison to other compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号