首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel thermo-responsive diblock copolymer of poly(N-vinyl-2-pyrrolidinone)-block-poly(N-isopropylacrylamide) (PNVP-b-PNIPAM) was synthesized. FT-IR, 1H-NMR and SEC results confirmed the successful synthesis of PNVP-b-PNIPAM diblock copolymer via anionic polymerization. The polymeric micelles formed from PNVP-b-PNIPAM copolymer in aqueous solution were developed and characterized as a potential thermo-responsive and biocompatible drug delivery system. Micellization of the diblock copolymer in aqueous solution was characterized by dynamic laser scattering (DLS), turbidity measurement, tension measurement and transmission electron microscopy (TEM). The thermo-responsive polymeric micelles with the size ranges of 200 to 260 nm and thickness of 30 nm are localized, selected and targeted for drug release, having a great potential in response to external-stimulus such as temperatures from 35 to 39°C. The critical micellization concentration (cmc) of PNVP-b-PNIPAM in aqueous solution is 0.0026 wt% determined by turbidity measurement. The size of micelles determined by DLS increased from 163 to 329 nm with increasing concentration of PNVP-b-PNIPAM from 0.25 to 0.5 wt% in aqueous solution at 40°C, which is determined by DLS.  相似文献   

2.
Amphiphilic block copolymers composed of D,L-lactide, trimethylene carbonate and the methoxy poly (ethylene glycol) (PETLA) were synthesized with ringopening copolymerization. Studies on the micellization and drug-controlled release behavior of PETLA were performed. Both of the copolymers and the micelles were characterized with the methods of 1H nuclear magnetic resonance (1H-NMR), fluorescence spectroscopy, gel permeation chromatographic (GPC), dynamic light scattering (DLS), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV). As a result, the critical micelle concentration of the copolymer was decreased with the increase of the hydrophobic chain length. DLS results indicated the diameters of the micelle were increased with increasing hydrophobic length. TEM photographs illustrated that micelles MT1 were regularly spherical with the diameter from 30 nm to 40 nm. Taking 9-nitro-20(S)-camptothecin (9-NC) for the model drug, the release profiles in vitro show that the release behavior from micelles was controllable and nearly in zero order after the initial burst release. __________ Translated from Acta Polymerica Sinica, 2008, 2 (in Chinese)  相似文献   

3.
通过开环共聚合成了由D,L-丙交酯、碳酸丙二酯和聚乙二醇构成的两亲性嵌段共聚物(PETLA),研究了PETLA胶束化及药物控释行为.嵌段共聚物和胶束通过核磁共振(1H-NMR)、荧光分光光度计、凝胶渗透色谱(GPC)、动态光散射(DLS)、透射电镜(TEM)和紫外光谱(UV)表征.实验结果发现临界胶束浓度随共聚物疏水链段长度增加而减小,胶束直径随疏水链段长度增加而增大.透射电镜照片表明载药胶束MT1直径为30~40nm,呈规则球形.体外释药表明9-NC以可控方式释放,突释后药物释放速率接近零级恒速.  相似文献   

4.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

5.
The synthesis of diblock copolymers of poly(N-isopropylacrylamide) (PNIPAM) and poly(vinyl acetate) (PVAc) was performed by macromolecular design via interchange of xanthates (MADIX) process. Following the preparation of methyl (isopropoxycarbonothioyl) sulfanyl acetate (MIPCTSA) as chain transfer agent, it was reacted with vinyl acetate to obtain PVAc macro-chain transfer agent. Then, block copolymerization was completed by successive addition of N-isopropylacrylamide (NIPAM). 1H NMR spectroscopy confirmed the presence of both blocks in the copolymer structure, with the expected composition based on the feed ratio. Size Exclusion Chromatography (SEC) was used to investigate the relative values of molecular characteristics. Only 20% of PVAc was converted to block copolymer. The resultant block copolymer structures were further examined in terms of their morphologies as well as critical micelle concentration (CMC) by using ESEM and Fluorescence Excitation Spectroscopic techniques, respectively. Morphological characterization confirmed amphiphilic block copolymer formation with the existence of mainly ca. 100 nm well distributed micelles. The thermo responsive amphiphilic behavior of the block copolymer solutions were followed by Dynamic Light Scattering (DLS) technique.  相似文献   

6.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Amphilic triblock copolymers with varying ratios of hydrophilic poly[bis (methoxyethoxyethoxy)phosphazene] (MEEP) and relatively hydrophobic poly(propylene glycol) (PPG) blocks were synthesized via the controlled cationic‐induced living polymerization of a phosphoranimine (Cl3P?NSiMe3) at ambient temperature. A PPG block can function as either a classical hydrophobic block or a less hydrophobic component by varying the nature of a phosphazene block. The aqueous phase behavior of MEEP‐PPG‐MEEP block copolymers was investigated using fluorescence techniques, TEM, and dynamic light scattering (DLS). The critical micelle concentrations (cmcs) of MEEP‐PPG‐MEEP block copolymers were determined to be in the range of 3.7–16.8 mg/L. The mean diameters of MEEP‐PPG‐MEEP polymeric micelles, measured by DLS, were between 31 and 44 nm. The equilibrium constants of pyrene in these micelles ranged from 4.7 × 104 to 9.6 × 104. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 692–699, 2009  相似文献   

8.
Amphiphilic fluorescent graft copolymer (PVP‐PyATAm) was successfully synthesized by the free radical copolymerizations of hydrophobic monomer N‐acryloyl‐thioureylene‐4‐(1‐pyrene)‐butyryl amide (PyATAm) with hydrophilic precursor polymers of vinyl‐functionalized poly (N‐vinylpyrrolidone) (Acryloyl‐PVP) in DMF. FT‐IR, 1H NMR, TEM, gel permeation chromatography‐multi‐angle laser light scattering, UV‐vis spectroscopy, viscometric measurement, and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation showed that the copolymer PVP‐ PyATAm formed spherical micelles in an aqueous solution and the size of micelles was between 50 and 70 nm in diameter. The interaction of PVP‐PyATAm copolymer and plasmid DNA was examined by agarose gel electrophoresis and TEM. Results indicated that the copolymer–DNA complexes were self‐assembled and the size of complexes was between 90 and 120 nm in diameter. Cytotoxity studies using MTT colorimetric assays suggested good biocompatibility of PVP‐PyATAm in vitro. These results suggested the potential of this graft copolymer as gene delivery carrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

10.
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008  相似文献   

11.
Amphiphilic star shape poly(ε‐caprolactone)‐b‐hyperbranched polyglycidol (sPCL‐HPG) were synthesized and used to investigate micell formation and to encapsulate hydrophobic drugs. The synthesis of sPCL‐HPG copolymers was carried out by using sPCL as macroinitiator for the ensuing of hypergrafting reaction with glycidols. 1H‐NMR and FTIR were used to characterize sPCL‐b‐HPG structures. The self‐assembled structure of the sPCL‐HPG was characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The size and size dispersities of micelles were measured by dynamic light scattering DLS. Critical micelle concentration (CMC) was determined using pyrene as fluorescent probe. Hydrophobic methyl red was encapsulated in sPCL‐HPG micelles to illustrate hydrophobic drug loading. The copolymer micelles were used to enhance paclitaxel solubility. The results showed that hydrophobic drugs could be encapsulated in the sPCL‐HPG micelles. The paclitaxel solubility in the micelles of 5 wt% of sPCL23‐HPG170 got to 168 µg/ml. sPCL‐HPG, which have biodegrability and hydrophobicity at PCL part and smaller size of HPG fragments while maintaining the total repeating units of glycidols, provide an alternative choice of carriers for poorly soluble drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.

The purpose of this paper is to study the synthesis and application of a new type of chitosan‐g‐poly(L‐lactide) copolymer with different grafting percentage in the presence of triethylamine. FTIR and 1H NMR results indicate that grafting percentage of graft copolymers increases with the molar feeding ratio of L‐lactide to chitosan. The measurement of XRD and TG shows that graft copolymer exhibits low crystallinity and thermal degradation temperature. Static water contact angle testing suggests that graft copolymer has superior hydrophilicity compared with PLLA, which can be very useful for biomedical applications. 5‐Fluorouracil loaded copolymer microspheres were prepared by phase separation method. The size and distribution of microspheres were measured by a Laser particle analyzer. The microspheres with LLA:CS feeding molar rotio (15∶1) have a mean diameter of 332 nm with a narrow unimodal distribution. The spherical microspheres were observed by transmission electron microscopy (TEM). The microspheres shows good releasing property from drug release in vitro, and the drug release rate decreases as the increase of microspheres size.  相似文献   

13.
A new hyperbranched poly (amine‐ester)‐poly (lactide‐co‐glycolide) copolymer (HPAE‐co‐PLGA) was synthesized by ring‐opening polymerization of D , L ‐lactide (DLLA) glycolid and branched poly (amine‐ester) (HPAE‐OHs) with Sn(Oct)2 as catalyst. The chemical structures of copolymers were determined by FT‐IR, 1H‐NMR(13C NMR), TGA and their molecular weights were determined by gel permeation chromatography (GPC). Paclitaxel‐loaded copolymer nanoparticles were prepared by the nanoprecipitation method. Their physicochemical characteristics, e.g. morphology and nanoparticles size distribution were then evaluated by means of fluorescence spectroscopy, environmental scanning electron microscopy (ESEM), and dynamic light scattering (DLS). Paclitaxel‐loaded nanoparticles assumed a spherical shape and have unimodal size distribution. It was found that the chemical composition of the nanoparticles was a key factor in controlling nanoparticles size, drug‐loading content, and drug release behavior. As the molar ratio of DL ‐lactide/glycolide to HPAE increased, the nanoparticles size and drug‐loading content increased, and the drug release rate decreased. The antitumor activity of the paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles against human liver cancer H7402 cells was evaluated by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) method. The paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles showed comparable anticancer efficacy with the free drug. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Formation and structure of micelles from two amphiphilic polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymers (PS mol.wt. 1000; PEO mol.wt. 3000 and 5000) were examined by surface tension, viscosity, steady state fluorescence, dynamic light scattering (DLS), small angle neutron scattering (SANS), and cryo-transmission electron microscopy (cryo-TEM). The critical micelle concentration (CMC) of the copolymers in aqueous solution was ca. 0.05%; micelle hydrodynamic diameter was 30–35 nm with a narrow size distribution. SANS studies show that the copolymers form ellipsoidal micelles with semi major axis ~23 nm and semi minor axis ~8 nm. No significant change in the structure was found with temperature and presence of salt. The copolymer micelles interaction with the ionic surfactants sodium dodecyl sulphate (SDS) and dodecyltrimethylammonium bromide (DTAB) was also examined by DLS and SANS.  相似文献   

15.
In this study, with the aim of designing an ideal anticancer drug carrier, we synthesized novel amphiphilic graft copolymers, P(Glu-alt-PEG)-graft-PCLA, based on poly(ethylene glycol) (PEG) segments and glutamic acid (Glu) units as the hydrophilic main chain, and poly(?-caprolactone-co-lactide) (PCLA) as hydrophobic branches. The chemical structure of the copolymers was characterized by (1)H MNR and FT-IR. The self-assembly of the copolymers to form micelles was studied by TEM, DLS and fluorescence spectroscopy. In vitro doxorubicin controlled release studies demonstrated that these graft copolymer micelles had high drug loading capacity and good controlled released properties, demonstrating their potential as a novel anticancer drug carrier. The drug loaded graft copolymer micelles exhibited efficient inhibition of HeLa cells in in vitro studies.  相似文献   

16.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

17.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

18.
以聚乙二醇单甲醚(mPEG)和外消旋丙交酯(D,L-LA)为原料,采用开环聚合法合成聚乙二醇单甲醚-聚乳酸(mPEG-PLA)共聚物,并用溶剂挥发法制备包载双氢青蒿素(DHA)的共聚物胶束(DHA/mPEG-PLA)。利用红外光谱(FT-IR)、核磁共振氢谱(1 H-NMR)和接触角测量仪研究了共聚物的结构和性质;利用激光粒度分析仪和扫描电镜(SEM)研究了胶束的粒径和形貌。结果表明mPEG-PLA共聚物的临界胶束浓度(CMC)为7.71mg/L。DHA/mPEG-PLA共聚物胶束呈球形,平均粒径(118.1±1.9)nm,载药量和包封率分别为(2.7±0.1)%和(77.1±0.3)%。胶束对DHA的水相表观溶解度增大约1.5倍。紫外光光照39h,纯DHA在混悬液中降解率达37%且持续增长,胶束中DHA降解率达到10%后基本保持不变。  相似文献   

19.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

20.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号