首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new lawsone-based azo-dye 2-hydroxy-3-((pyridin-2-ylmethyl)diazenyl)naphthalene-1,4-dione (1) was synthesized and applied for sensing of metal ions. Receptor 1 showed selective fluorescent and colorimetric response for the detection of Cu2+ and Fe3+ over other tested metal ions. The fluorescence intensity of 1 was significantly quenched allowing detection of Fe3+ and Cu2+ down to 0.61 and 6.06 μM, respectively. The binding has been established by fluorescence spectroscopic method. Receptor 1 provided a 1?:?1 binding scaffold for recognition of Fe3+ and Cu2+ ions with the association constant of 3.33 × 106 and 3.33 × 105 M?1, respectively. The B3LYP/6-31G/LANL2DZ method was employed for the optimization of 1 and 1·Fe3+ and 1·Cu2+.  相似文献   

2.
A “turn‐on” pattern Fe3+‐selective fluorescent sensor was synthesized and characterized that showed high fluorescence discrimination of Fe3+ over Fe2+ and other tested ions. With a 62‐fold fluorescence enhancement towards Fe3+, the probe was employed to detect Fe3+ in vivo in HeLa cells and Caenorhabditis elegans, and it was also successfully used to elucidate Fe3+ enrichment and exchange infected by innexin3 (Inx3) in hemichannel‐closed Sf9 cells.  相似文献   

3.
The synthesis of a novel, and highly selective Fe3+ ion sensor based on anthrone-spirolactam and its quinoline hybrid ligand is reported. The designed ligand displayed selective detection of Fe3+ ions with enhanced fluorescence emission. The complexation of Fe3+ ion led to a red shift of 32 nm from 420 nm to 452 nm, and a several fold increase in intensity with fluorescent green emission. The complexation (detection) of Fe3+ ions with ligand resulted in chelation enhanced fluorescence and intramolecular charge transfer through the inhibition of C=N isomerization. This hybrid sensor shows high sensitivity and selectivity, spontaneous response, and works on a wide pH range a minimum detection limit of 6.83 × 10−8 M. Importantly, the sensor works through the fluorescence turn-on mechanism that overcomes the paramagnetic effect of Fe3+ ions. The binding mechanism between the ligand and the Fe3+ ions was established from the Job's plot method, optical studies, Fourier transfor infrared spectroscopy, NMR titration, fluorescence life-time studies, and density functional theory optimization. The sensor displayed excellent results in the quantification of Fe3+ ions from real water samples. Furthermore, due to its biocompatibility nature, fluorescent spotting of Fe3+ ions in live cells revealed its bioimaging applications.  相似文献   

4.
A highly sensitive and selective potentiometric and voltammteric assay for the detection of Fe3+ using (E)‐3‐((2‐(2‐(2‐aminoethylamino) ethylamino) ethylimino)methyl)‐4H‐chromen‐4‐one (IFE(III)) ionophore was developed. To demonstrate the ion‐to‐electron transfer ability of MWCNT, these were incorporated in the ion‐selective membrane and response characteristics of Fe3+ electrode was compared with those of the traditional ion selective electrode. The electrode showed an improved Nernstian slope, lower detection limit, response time of less than 5 s and working in a pH range of 3.0 to 8.0. Differential pulse voltammetric studies were performed for IFE(III)‐Fe3+ complex in DMSO solvent medium at glassy carbon (GC) electrode. A linear relationship between the cathodic peak current and concentration of Fe3+ was observed in the range of 1.6×10?5 to 4.4×10?5 mol/L with a detection limit of 5.2×10?8 mol/L. The electrode shows remarkable selectivity for Fe3+ ions over alkali, alkaline earth, transition and heavy metal ions. The optimized electrode was successfully applied for the determination of Fe3+ ion in different real‐life samples using potentiometric technique. Theoretical calculations were used to support the complexation behavior of Fe3+ with IFE(III).  相似文献   

5.
Forming carboxyl-Fe3+ coordination bonds as physical crosslinks is an effective strategy to develop tough hydrogels. Considering the inhibition of ferric ions on free-radical polymerization, these coordination bonds cannot be formed during the reaction, and a soaking process of preformed hydrogels is usually required for mechanical enhancement, resulting in uncontrollable gradient structure, long preparation time, and unnecessary waste of metallic ions. A facile strategy is reported here to prepare tough metallosupramolecular hydrogels by polymerization and in situ formation of coordination bonds with phosphates as the temporal ligands of Fe3+ ions. The phosphate ligands in the precursor solution form coordination complexes with the Fe3+ ions, which avoids the inhibition and ensures the polymerization. After swelling the resultant hydrogel in water, the ligands are substituted by carboxyl groups of the gel matrix due to the variation of local pH. The equilibrated hydrogel with carboxyl-Fe3+ coordination bonds as the physical crosslinks possesses excellent mechanical properties that can be tuned over a wide range by adjusting the polymer compositions and the concentrations of phosphate ligands and Fe3+ ions. This strategy should be applicable to other systems to enable synthesis of functional hydrogels with Fe3+ ions as the additive toward specific applications in engineering and biomedical fields.  相似文献   

6.
A cyclometalated ruthenium (II) complex 1 [(Ru (Phen)2(Pbznh)]+ PF6 (Phen = 1,10-phenanthroline and Pbznh = N-(4-(pyridine-2-yl)benzylidene) nicotinohydrazide) with nicotinohydrazide as a functional group was synthesized and characterized. Changes of its absorption spectra and color induced by Cu2+ and Fe3+ were systematic investigated. The results demonstrated that complex 1 could be served as a colorimetric probe to fast, selective and sensitive detection of Cu2+ and Fe3+ both in acetonitrile and filter paper based strips. Upon addition of Cu2+ and Fe3+ to solution of probe 1 , solution color changed from pink to colorless and light yellow respectively, and their corresponding detection limit were calculated to be 3.26 × 10−8 M and 3.12 × 10−7 M. Moreover, color of test papers with 1 changed from pink to colorless/yellow when Cu2+/Fe3+ were dropwise added. Therefore, it can be used as a desirable ‘naked-eye’ indicator candidate for Cu2+ and Fe3+.  相似文献   

7.
We synthesized a novel benzimidazole-based fluorescent receptor bearing imine linkages with two sets of sp2 nitrogens, and investigated its binding properties toward various metal ions. The receptor exhibited a shift in emission band upon binding with Fe3+ ions, and no such significant response was noticed in other metal ions. The receptor shows a property of selective ratiometric fluorescent probe of Fe3+ ions without interferences of the background metal ions.  相似文献   

8.

In this study, kumquat was first time used for synthesizing carbon dot structures (CDs) with the hydrothermal method. These newly synthesized CDs was characterized structurally and optically. The ion sensor application of the new CDs was carried out using 20 different metal ions. It was observed that CDs have high selectivity only for Fe3+ ions among the metal ions studied. Detection limit for Fe3+ ions was calculated as 0.70 µM. The results showed that these new CDs are highly selective against Fe3+ ions and have a very short response time such as 0.5 min. The Fe3+ ions selectivity of CDs was tested on real (tap water) samples. The results exhibited that this new CDs, obtained with green synthesis from Kumquat fruit without using chemical agents in one-pot simple and economical process, can be used as fluorometric sensor for detection of Fe3+ ions with high selectivity and sensitivity, low detection limit and rapid response time.

  相似文献   

9.
A new glucose-based C2-derivatized colorimetric chemo-sensor (L1) has been synthesized by a one-step condensation of glucosamine and 2-hydroxy-1-naphthaldehyde for the recognition of transition metal ions. Among the eleven metal ions studied, viz., Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, L1 results in visual colour change only in the presence of Fe2+, Fe3+and Cu2+ in methanol. However, in an aqueous HEPES buffer (pH 7.2) it is only the Fe3+ that gives a distinct visual colour change even in the presence of other metal ions, up to a concentration of 280 ppb. The changes have been explained based on the complex formed, and the composition has been determined to be 2:1 between L1 and Fe3+ based on Job’s plot as well as ESI MS. The structure of the proposed complex has been derived based on HF/6-31G calculations.  相似文献   

10.
We synthesized a novel benzimidazole-based, anthracene-coupled fluorescent receptor capable of recognizing and estimating the concentrations of Fe3+ in semi-aqueous solution by ratiometric estimation. Our sensor can be made highly selective for Fe3+ over other metal ions by changing the solvent composition.  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(12):8697-8707
A dipodal fluorescent probe 3, with imine and hydroxyl moieties as binding sites, has been synthesized and characterized with spectroscopic methods, single-crystal X-ray techniques, and DFT. The synthesized probe 3 (φ = 0.0028) showed highly sensitive and highly specific fluorescent ‘turn-on’ effect (λem = 453 nm) for the 1:1 binding with Fe3+ ions to form probe 3.Fe3+ complex (φ = 0.203) in semi-aqueous medium (acetonitrile:water (50:50; v/v)) and live cells. The 1:1 binding stoichiometry of probe 3 and Fe3+ ions was proposed by DFT calculations and confirmed by the NMR spectroscopy, crystal structures of probe 3 and 3.Fe3+ complex, and mass spectrum of probe 3.Fe3+ complex. The stability of probe 3.Fe3+ complex in a wide pH range (pH 2–12) and reversibility for binding with Fe3+ ions in the presence of EDTA indicates that it can be an effective chemosensor for the detection of Fe3+ ions in various samples, including living cells. Importantly, with the LOD of 21.5 nM for the detection of Fe3+ ions, probe 3 did not show any interference from potentially competing ions even at a 1:3 ratio, indicates its biocompatibility. The nanomolar limit of detection (21.5 nM), cell permeability, and low cytotoxicity allows the probe 3 to be an excellent tool for the live-cell imaging and detection of ferric ions in live cells.  相似文献   

12.
A novel compound hexa-rhodamine substituted phosphazene (HRP) with six active centers on a cyclotriphosphazene ring was synthesized using the alkyne-azide “click” reaction. The structure of HRP was characterized using spectroscopic techniques. The optical sensor properties of HRP for metal ions were investigated using UV-Vis and Fluorescence spectroscopy. It was determined that HRP is a selective sensor with colorimetric and fluorescent properties for Fe3+ ions. Limit of detection (LOD) of HRP was determined as 6.94?×?10?9 M using fluorescence intensities in the presence of different concentrations of Fe3+ ions. It was determined that HRP-Fe3+ complex has high quantum yield and excellent photostability.  相似文献   

13.
We report here a facile colorimetric sensor based on the N-acetyl-l-cysteine (NALC)-stabilized Ag nanoparticles (NALC–Ag NPs) for detection of Fe3+ ions in aqueous solution. The Ag NPs with an average diameter of 6.55 ± 1.0 nm are successfully synthesized through a simple method using sodium borohydride as reducing agent and N-acetyl-l-cysteine as protecting ligand. The synthesized silver nanoparticles show a strong surface plasmon resonance (SPR) around 400 nm and the SPR intensity decreases with the increasing of Fe3+ concentration in aqueous solution. Based on the linear relationship between SPR intensity and concentration of Fe3+ ions, the as-synthesized water-soluble silver nanoparticles can be used for the sensitive and selective detection of Fe3+ ions in water with a linear range from 80 nM to 80 μM and a detection limit of 80 nM. On the basis of the experimental results, a new detection mechanism of oxidation–reduction reaction between Ag NPs and Fe3+ ions is proposed, which is different from previously reported mechanisms. Moreover, the NALC–Ag NPs could be applied to the detection of Fe3+ ions in real environmental water samples.  相似文献   

14.
Two electroactive materials, M1 and M2 , are synthesized and their fluorescent electropolymerized (EP) films are prepared and used to detect metal ions. From the tested metal ions, M1 and M2 are demonstrated to be sensitive and selective for Fe3+ ions. In particular, M2 exhibits higher sensitivity towards Fe3+ ions. The fluorescent detection ranges from 10?5 M to 4×10?4 M . The excellent performance of the EP fluorescent films is mainly due to the strong metal‐chelated properties of M2 and the intrinsic porous cross‐linked‐network microstructure of the EP films. This study, thus, provides a promising Fe3+ sensing candidate and a potential preparation method for fluorescent sensing films.  相似文献   

15.
2-Amino-6-methyl-4-phenyl-nicotinonitrile 1, a 2-aminopyridine-based fluorescent compound, was found to be a fluorescent chemosensor for the detection of Fe3+ and Hg2+ ions over a number of other metal ions. Compound 1 was synthesized in one step using a multicomponent reaction, and characterized using common spectroscopic tools. During Fe3+/Hg2+ sensing the compound 1 followed a ‘switch-off’ mechanism. Further, compound 1 could sense Fe3+ over Hg2+ by its distinct absorption and fluorescence quenching behaviors. 1:1 complex formation of 1 with Fe3+ and Hg2+ was clearly understood from Job’s plot. The present work brings additional evidence on the importance of multicomponent reactions which could lead to the development of fluorescence chemosensor in one step for the selective detection of biologically important metal ions.  相似文献   

16.
Transition metal ions (Pb2+, Zn2+, Cd2+, Co2+, Mn2+, Cu2+, Ni2+, Hg2+, Ag+, Fe3+) in water are used to quench emission of 2-(6-oxido-6H-dibenz 〈c,e〉 〈1,2〉 oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s (MD5) with aggregation-induced emission enhancement (AIEE) in water-acetonitrile (AN) mixture (80:20 by volume). Among all metal ions, Fe3+ exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe3+ is lower than 1×10−6 mol/L. The quenching efficiency of Hg2+ is lower than that of Fe3+ at the same concentration, though MD5 is used to detect Hg2+ efficiently, too. To other metal ions, low quenching efficiency has few relations with a wider concentration range. The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg2+ and Fe3+, which indicates a salt-induced Jaggregation. SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg2+ and Fe3+, which reduce the surface area of MD5 emission for further aggregation. The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.  相似文献   

17.
A conjugated polymer (PPETE-RB) with poly[p-(phenylene ethynylene)-alt-(thienylene-ethynylene)] (PPETE) as the backbone with pendant rhodamine B (RB) groups in the close-ring spirolactam form was synthesized. With long spacer between backbone and pedant groups as well as long solubilizing side chains, the polymer possesses good solubility in most organic solvents and relatively large molecular weight. The fluorescence of the conjugated polymer in THF exhibited selective dual responses upon adding Fe3+/Fe2+ but negligible response upon other cations. The emission around 481 nm (excited at 360 nm) decreased and that around 571 nm (excited at 520 nm) emerged and increased when increasing the concentration of iron ions. The responses to Fe3+ and Fe2+ are very similar. The limits of detection were found to fall in between 6 μM and 8 μM. The mechanism study showed that the quenching around 481 nm was due to the inner filter effect (IFE) between the Fe3+/Fe2+ and PPETE-RB; while that enhancement around 571 nm could be attributed to the formation of fluorescent ring-open structure from nonfluorescent spirolactam of pedant RB group upon Fe3+/Fe2+. Such dual and opposite responses provided more reliable information than single response for sensing applications.  相似文献   

18.
Guanosine‐5′‐hydroxamic acid ( 3 ) forms hydrogels when mixed with guanosine ( 1 ) and KCl. The 5′‐hydroxamic acid (HA) unit is pH‐responsive and also chelates Fe3+. When gels are prepared under basic conditions, the 5′‐HA groups are deprotonated and the anionic hydrogel binds cationic thiazole orange (TO), signaled by enhanced fluorescence. The HA nucleoside 3 , when immobilized in the G‐quartet gel, acts as a supramolecular siderophore to form red complexes with Fe3+. We patterned the hydrogel's surface with FeCl3, by hand and by using a 3D printer. Patterns form instantly, are visible by eye, and can be erased using vitamin C. This hydrogel, combining self‐assembled G‐quartet and siderophore–Fe3+ motifs, is strong, can be molded into different shapes, and is stable on the bench or under salt water.  相似文献   

19.
A new chemosensor based on coumarin FB has been designed and synthesized for the detection of Fe3+ and PPi. FB displayed a high affinity to Fe3+ in the presence of other competing cations. The resulting FB-Fe3+ complex displayed highly sensitivity to PPi via Fe3+ displacement approach. The Fe3+ and PPi recognition processes is rapid and reversible, the detection limits of FB to Fe3+ and FB-Fe3+ complex to PPi were estimated to be 8.73?×?10?8?M and 1.25?×?10?8?M, respectively. The good biocompatibility of FB enables the investigation of fluorescent response for Fe3+ and PPi in living cells by confocal microscope. A B3LYP/6-31G(d,p) basis set was employed for optimization of FB and FB-Fe3+ complex.  相似文献   

20.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号