首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

5‐tert‐Butyl‐isophthalic acid (TIPA) was polycondensed with three different aromatic diamines by means of triphenylphosphite (TPP) and pyridine. The resulting polyamides were characterized by solution viscosities and MALDI‐TOF mass spectra (m.s.). These m.s. revealed significant fractions of cyclic oligo‐ and polyamides in all samples. In polyamides of high molecular weight, only cycles were detectable (observed up to masses of 13,000 Da). Three poly(amide‐imide)s were prepared by TPP‐mediated polycondensation of trimellitic anhydride (TMA) and three aromatic diamines. Although relatively high molar masses were obtained, the MALDI‐TOF m.s. displayed the peaks of linear chains in addition to those of cyclic polymers. The results together suggest that the side reactions mainly occur at the amino endgroups.  相似文献   

2.
Supramolecular inclusion complexes (ICs) involving polyhedral oligomeric silsesquioxane (POSS) capped poly(?‐caprolactone) (PCL) and α‐cyclodextrin (α‐CD) were investigated. POSS‐terminated PCLs with various molecular weights were prepared via the ring‐opening polymerization of ?‐caprolactone (CL) with 3‐hydroxypropylheptaphenyl POSS as an initiator. Because of the presence of the bulky silsesquioxane terminal group, the inclusion complexation between α‐CD and the POSS‐capped PCL was carried out only with a single end of a PCL chain threading inside the cavity of α‐CD, which allowed the evaluation of the effect of the POSS terminal groups on the efficiency of the inclusion complexation. The X‐ray diffraction results indicated that the organic–inorganic ICs had a channel‐type crystalline structure. The stoichiometry of the organic–inorganic ICs was quite dependent on the molecular weights of the POSS‐capped PCLs. With moderate molecular weights of the POSS‐capped PCLs (e.g., Mn =3860 or 9880), the stoichiometry was 1:1 mol/mol (CL unit/α‐CD), which was close to the literature value based on the inclusion complexation of α‐CD with normal linear PCL chains with comparable molecular weights. When the PCL chains were shorter (e.g., for the POSS‐capped PCL of Mn = 1720 or 2490), the efficiency of the inclusion complexation decreased. The decreased efficiency of the inclusion complexation could be attributed to the lower mobility of the bulky POSS group, which restricted the motion of the PCL chain attached to the silsesquioxane cage. This effect was pronounced with the decreasing length of the PCL chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1247–1259, 2007  相似文献   

3.
A series of organo‐soluble new polyamides were synthesized by the direct polycondensation of different semifluorinated aromatic diamines, namely 4,4‐bis[3'‐trifluoromethyl‐4'(4“‐amino benzoxy)benzyl]biphenyl; 4,4”‐bis(aminophenoxy)‐3'3“‐trifluoromethyl terphenyl; 1,3‐bis[3'‐trifluoromethyl‐4'(4”‐amino benzoxy)benzyl]benzene; 2,6‐bis(3'‐trifluoromethyl‐p‐aminobiphenyl ether)pyridine; and 2,5‐bis(3'‐trifluoromethyl‐p‐aminobiphenyl ether)thiophene with 5‐t‐butyl‐isophthalic acid. The polymers were fully characterized by elemental analysis and IR, NMR spectroscopies. The synthesized polyamides were soluble in several organic solvents such as 1‐methyl‐2‐pyrrolidone, N,N‐dimethylformamide, N,N‐dimethylacetamide, tetrahydrofuran, and dimethyl sulfoxide at room temperature. They showed inherent viscosities of 0.42–0.63 dl/g. The polyamides exhibited weight‐average molecular weights of up to 233,000, which depended on the exact repeating unit structure. The polyamides synthesized from 4,4‐bis[3'‐trifluoromethyl‐4'(4”‐amino benzoxy)benzyl]biphenyl and 5‐t‐butyl isophthalic acid exhibited highest glass‐transition temperatures 261°C (evaluated by differential scanning calorimetry) in nitrogen. These polyamides showed good thermal stability up to 475°C for a 10% weight loss in air. The polyamides films were clear and flexible in nature with tensile strengths of up to 88 MPa, modulus of elasticity of up to 1.81 GPa, and elongations at break of up to 25%, which depended on the exact repeating unit structure. X‐ray diffraction measurements indicated that these polyamides were amorphous in nature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Two series of novel fluorinated aromatic polyamides were prepared from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic dicarboxylic acids with the phosphorylation polyamidation technique. These polyamides had inherent viscosities ranging from 0.51 to 1.54 dL/g that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 36,200–80,000 and 17,200–64,300, respectively. All polymers were highly soluble in aprotic polar solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some could even be dissolved in less‐polar solvents like tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 76–94 MPa and initial moduli of 1.70–2.22 GPa. Glass‐transition temperatures (Tg's) and softening temperatures of these polyamides were observed in the range of 185–268 °C by differential scanning calorimetry or thermomechanical analysis. Decomposition temperatures (Td's) for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. Almost all the fluorinated polyamides displayed relatively higher Tg and Td values than the corresponding nonfluorinated analogues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 420–431, 2003  相似文献   

5.
A set of new aromatic polyamides were synthesized by the direct phosphorylation condensation of 4‐(1‐adamantyl)‐1,3‐bis‐(4‐aminophenoxy)benzene with various diacids. The polymers were produced with high yields and moderate to high inherent viscosities (0.43–1.03 dL/g), and the weight‐average molecular weights and number‐average molecular weights, determined by gel permeation chromatography, were in the range of 37,000–93,000 and 12,000–59,000, respectively. The polyamides were essentially amorphous and soluble in a variety of solvents such as N,N‐dimethylacetamide (DMAc), cyclohexanone, and tetrahydrofuran. They showed glass‐transition temperatures in the range of 240–300 °C (differential scanning calorimetry) and 10% weight‐loss temperatures over 450 °C, as revealed by thermogravimetric analysis in nitrogen. All the polymers gave strong films via casting from DMAc solutions, and these films exhibited good mechanical properties, with tensile strengths in the range of 77–92 MPa and tensile moduli between 1.5 and 2.5 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1014–1023, 2000  相似文献   

6.
l ‐Lactide is polymerized in bulk at 160 °C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2‐mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio‐ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring‐opening polymerization and polycondensation process including end‐to‐end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 °C. With SnSPF optically pure cyclic poly(l ‐lactide)s with high‐molecular weights can be prepared at 160 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3767–3775  相似文献   

7.
Dipalladium complexes of a cyclic bis(diimine) ligand with a double‐decker structure catalyze polymerization of ethylene and α‐olefins and copolymerization of ethylene with 1‐hexene. The polymerization of 1‐hexene yields a polymer that is mainly composed of the hexamethylene unit formed by 2,1‐insertion of the monomer into the palladium–carbon bond, followed by chain‐walking (6,1‐insertion). The polymerization of 4‐methyl‐1‐pentene proceeds by 2,1‐insertion with a selectivity of 92–97 %, and affords the polymer with methyl and 2‐methylhexyl branches. 2,1‐Insertion occurs selectively in all of the polymerization reactions of α‐olefins catalyzed by the dipalladium complexes. Ethylene polymerization with the catalyst at 100 °C lasts over 24 h, whereas the monopalladium–diimine catalyst loses its activity within 8 h at 60 °C. Polyethylene obtained by the dipalladium catalyst is less‐branched and has a higher molecular weight compared to that of the monopalladium catalyst under the same conditions. Copolymerization of ethylene with 1‐hexene affords solid products with melting points and molecular weights that vary depending on the polymerization time, suggesting formation of a block and/or gradient copolymer.  相似文献   

8.
A new cardo dicarboxylic acid, 8,8‐bis[4‐(4‐carboxyphenoxy)phenyl]tricyclo[5.2.1.02,6]decane (BCPTD), was synthesized from 4,4′‐(octahydro‐4,7‐methano‐5H‐inden‐5‐ylidene)bisphenol and p‐fluorobenzonitrile via aromatic nucleophilic substitution followed by hydrolysis. A series of new cardo polyamides was prepared by the direct polycondensation of BCPTD and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP) with triphenyl phosphite and pyridine as the condensing agents. Polymers were produced with moderate to high inherent viscosities of 0.65 to 1.08 dL g−1. The polymers, except for polymer PA1 , exhibited number‐average molecular weights and weight‐average molecular weights in the range of 38,400 to 86,300 and 57,800 to 148,000, respectively. Nearly all of the polymers were readily soluble in polar solvents such as NMP, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide as well as in less polar solvents such as pyridine, γ‐butyrolactone, and tetrahydrofuran. All of the polymers were amorphous, and the polyamide films had a tensile‐strength range of 75 to 128 MPa and a tensile‐modulus range of 2.0 to 2.8 GPa. These polyamides had glass‐transition temperatures between 240 and 269°C and 10% weight‐loss temperatures in the range of 477 to 508°C and 471 to 518°C in nitrogen and air atmospheres, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 74–79, 2000  相似文献   

9.
As a novel extension, the Kabachnik–Fields reaction was applied to the synthesis of alkyl α‐aminomethyl‐phenylphosphinates, and the double phospha‐Mannich reaction was utilized in the preparation of bis(alkoxyphenylphosphinylmethyl)amines. A total of 27 new aminophosphinate derivatives were synthesized by the microwave‐assisted solvent‐free condensation of alkyl phenyl‐H‐phosphinates, paraformaldehyde, and primary or secondary amines. The starting P‐species were also prepared under microwave conditions. The formation of the N‐methylated aminomethyl‐phenylphosphinate by‐products was also investigated.  相似文献   

10.
Host–guest interactions between α‐, β‐ and γ‐cyclodextrins and vanadocene dichloride (Cp2VCl2) have been investigated by a combination of thermogravimetric analysis, differential scanning calorimetry, powder X‐ray diffraction and solid‐state and solution electron paramagnetic resonance (EPR) spectroscopy. The solid‐state results demonstrated that only β‐ and γ‐cyclodextrins form 1:1 inclusion complexes, while α‐cyclodextrin does not form an inclusion complex with Cp2VCl2. The β‐ and γ‐CD–Cp2VCl2 inclusion complexes exhibited anisotropic electron‐51V (I = 7/2) hyperfine coupling constants whereas the α‐CD–Cp2VCl2 system showed only an asymmetric peak with no anisotropic hyperfine constant. On the other hand, solution EPR spectroscopy showed that α‐cyclodextrin (α‐CD) may be involved in weak host–guest interactions in equilibrium with free vanadocene species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Stereoregular polyamides containing two chiral backbone carbons in the repeating unit were prepared by polycondensation of bis(pentachlorophenyl) 2,3-O-methylene-L -tartrate with 1,9 and 1,12-alcanediamines activated as N,N′-bis(trimethylsilyl) derivatives. The polymers were characterized by elemental analysis, IR, and 1H-NMR spectroscopy, and differential scanning calorimetry. Both viscosimetry and GPC were used to estimate the molecular weights which ranged between 6000 and 44000. These polytartaramides were readily soluble in chloroform, displayed moderate optical activity in solution, and formed highly crystalline films.  相似文献   

12.
The challenging synthesis of an α‐cyclodextrin (CD)‐based macromolecular rotaxane with definite structure was fulfilled using a size‐complementary method. A new peracetylated (PAc) α‐CD‐based size‐complementary [3]rotaxane was prepared and its thermal dissociation kinetics studied. The de‐slippage mechanism was found to be different from that of the native α‐CD‐based system. PAcα‐CD‐based size‐complementary [3]rotaxanes were employed as initiators for a ring‐opening polymerization of ?‐caprolactone to obtain the macromolecular [3]rotaxanes. Detailed investigation of component dissociation showed the highly movable character of the wheel on the polymer main chain. A general method for controlling the movement of wheels in rotaxane frameworks, even in polymer systems, was established. This will enable the development of new supramolecular architectures and molecular machines.  相似文献   

13.
In this study, new nitroxides based on the 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐oxy skeleton were used to examine chain‐end control during the preparation of polystyrene and poly(t‐butyl acrylate) under living free‐radical conditions. Alkoxyamine‐based initiators with a chromophore attached to either the initiating fragment or the mediating nitroxide fragment were prepared, and the extent of the incorporation of the chromophores at either the initiating end or the propagating chain end was determined. In contrast to 2,2,6,6‐tetramethyl piperidinoxy (TEMPO), the incorporation of the initiating and terminating fragment into the polymer chain was extremely high. For both poly(t‐butyl acrylate) and polystyrene with molecular weights less than or equal to 70,000, incorporations at the initiating end of greater than 97% were observed. At the terminating chain end, incorporations of greater than 95% were obtained for molecular weights less than or equal to 50,000. The level of incorporation tended to decrease slightly at higher molecular weights because of the loss of the alkoxyamine propagating unit, which had important consequences for block copolymer formation. These results clearly show that these new α‐H nitroxides could control the polymerization of vinyl monomers such as styrene and t‐butyl acrylate to an extremely high degree, comparable to anionic and atom transfer radical polymerization procedures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4749–4763, 2000  相似文献   

14.
Significant structural effects of enol ether monomers were demonstrated in cationic alternating copolymerizations with benzaldehyde derivatives (BzAs). α‐Methyl, β‐methyl, β,β‐dimethyl, and cyclic enol ethers were copolymerized with BzAs by the EtSO3H/GaCl3 system with 1,4‐dioxane in toluene at ?78 °C. β‐Methyl and cyclic monomers, β‐monosubstituted compounds, induced copolymerizations with BzAs, some of which were well controlled to yield alternating copolymers with controlled molecular weights (MWs) and narrow MW distributions. Conversely, an α‐methyl vinyl ether (VE) did not copolymerize with BzAs at all, probably due to its high reactivity and unfavorable ketal linkage formations. In addition, a β,β‐dimethyl VE underwent only cyclotrimerizations because of its larger steric repulsion. The product alternating copolymers, especially those with cyclic units, exhibited improved thermal properties compared to those with simple VEs units. Under appropriate conditions, the alternating copolymers selectively degraded into the corresponding cinnamaldehyde derivatives by acid hydrolysis. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1334–1343  相似文献   

15.
Aromatic polyamides based on a novel bis(ether‐carboxylic acid) were synthesized by the direct phosphorylation condensation method. 1,4‐Bis(4‐carboxyphenoxy)‐2,5‐di‐tert‐butylbenzene was combined with various diamines containing flexible linkages and side substituents to render a set of eight novel aromatic polyamides. The polymers were produced with high yields and moderate to high inherent viscosities (0.49–1.32 dL/g) that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 31,000–80,000 and 19,000–50,000, respectively. Except for a single example, the polyamides were essentially amorphous and soluble in a variety of common solvents such as cyclohexanone, dioxane, and tetrahydrofuran. They showed glass‐transition temperatures of 250–295 °C (by differential scanning calorimetry) and 10% weight loss temperatures above 460 °C, as revealed by thermogravimetric analysis in nitrogen. Polymer films, obtained by casting from N,N‐dimethylacetamide solutions, exhibited good mechanical properties, with tensile strengths of 83–111 MPa and tensile moduli of 2.0–2.2 GPa. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 475–485, 2001  相似文献   

16.
Li Li  Song He  Yu Liu 《中国化学》2003,21(7):964-969
A novel β‐cyclodextrin dimer, 2, 2′‐o‐phenylenediseleno‐bridged bis (β‐cyclodextrin) (2), has been synthesized by reaction of mono‐[2‐O‐(p‐tolylsulfonyl)]‐β‐cyclodextrin and poly(o‐phenylenediselenide). The complexation stability constants (K2) and Gibbs free energy changes (‐ΔG°) of dimer 2 with four fluorescence dyes, that is, ammonium 8‐anilino‐1‐naphthalenesulfonate (ANS), sodium 6‐(p‐toluidino)‐2‐naphthalenesulfonate (TNS), Acridine Red (AR) and Rhodamine B (RhB) have been determined in aqueous phosphate buffer solution (pH = 7.2, 0.1 mol‐L?1) at 25 °C by means of fluorescence spectroscopy. Using the present results and the previously reported corresponding data of β‐cyclodextrin (1) and 6, 6′‐o‐phenylenediseleno‐bridged bis (β‐cyclodextrin) (3), binding ability and molecular selectivity are compared, indicating that the bis (β‐cyclodextrin)s 2 and 3 possess much higher binding ability toward these dye molecules than parent β‐cyclodextrin 1, but the complex stability constant for 2 linked from the primary side is larger than that of 3 linked from the secondary side, which is attributed to the more effective cooperative binding of two hydrophobic cavities of host 3 and the size/shape‐fit relationship between host and guest. The binding constant (K2,) upon inclusion complexation of host 3 and AR is enhanced by factor of 27.3 as compared with that of 1. The 2D 1H NOESY spectrum of host 2 and RhB is performed to confirm the binding mode and explain the relative weak binding ability of 2.  相似文献   

17.
The synthesis of a new compound, 2‐[(4‐bromomethyl)phenyl]‐4,5‐dihydro‐4,4‐dimethyloxazole ( 1 ), and its utility in the synthesis of oxazoline‐functionalized polystyrene by atom transfer radical polymerization (ATRP) methods are described. Aromatic oxazolyl‐functionalized polymers were prepared by the ATRP of styrene, initiated by ( 1 ) in the presence of copper(I) bromide/2,2′‐bipyridyl catalyst system, to afford the corresponding α‐oxazolyl‐functionalized polystyrene ( 2 ). The polymerization proceeded via a controlled free radical polymerization process to produce the corresponding α‐oxazolyl‐functionalized polymers with predictable number‐average molecular weights, narrow molecular weight distributions in high‐initiator efficiency reactions. Post‐ATRP chain end modification of α‐oxazolyl‐functionalized polystyrene ( 2 ) to form the corresponding α‐carboxyl‐functionalized polystyrene ( 3 ) was achieved by successive acid‐catalyzed hydrolysis and saponification reactions. The polymerization processes were monitored by gas chromatography analyses. The unimolecular‐functionalized initiator and functionalized polymers were characterized by thin layer chromatography, spectroscopy, size exclusion chromatography, and nonaqueous titration analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
Thermoplastic and organic‐soluble aromatic polyamides containing both bulky triphenylethane units and flexible ether linkages were prepared directly from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenylethane ( III ) with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane ( V ) with various aromatic dicarboxylic diacids via triphenyl phosphite and pyridine. These polyamides had inherent viscosities ranging from 0.71 to 1.77 dL/g. All the polymers easily were dissolved in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some even could be dissolved in less polar solvents such as tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 89 to 104 MPa. The polyamides were thermally stable up to 460°C in air or nitrogen. Glass‐transition temperatures of these polyamides were observed in a range of 179 to 268°C via differential scanning calorimetry or thermomechanical analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 247–260, 2000  相似文献   

19.
Complexation of fexofenadine with α‐cyclodextrin in aqueous medium was studied. The stoichiometry of the resulting inclusion complex was determined by 1H NMR titration data. 2D ROESY data provided the evidence of formation of the complex by entry of the phenyl ring into the α‐cyclodextrin cavity probably from wider opening. Determination of relative peak intensities of intermolecular cross‐peaks for the most stable complexes obtained by molecular mechanics (MM2) studies and from 2D ROESY spectral data confirmed the presence of only one complex in solution that has been fully characterized. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Ferrocene with a β‐cyclodextrin unit bound to one or both cyclopentadienyl rings through the secondary face were conveniently synthesized by regiospecific copper(I)‐catalyzed cycloaddition of 2‐O‐propargyl‐β‐cyclodextrin to azidomethyl or bis(azidomethyl)ferrocene. The supramolecular behavior of the synthesized conjugates in both the absence and presence of bile salts (sodium cholate, deoxycholate, and chenodeoxycholate) was studied by using electrochemical methods (cyclic and differential pulse voltammetry), isothermal titration calorimetry, and NMR spectroscopy (PGSE, CPMG, and 2D‐ROESY). These techniques allowed the determination of stability constants, mode of inclusion, and diffusion coefficients for complexes formed with the neutral and, in some cases, the oxidized states of the ferrocenyl conjugates. It was found that the ferrocenyl conjugate with one β‐cyclodextrin unit forms a redox‐controllable head‐to‐head homodimer in aqueous solution. The ferrocene–bis(β‐cyclodextrin) conjugate is present in two distinguishable forms in aqueous solution, each one having a different half‐wave oxidation potential for the oxidation of the ferrocene. By contrast, only one distinguishable form for the oxidized state of the ferrocene–β‐cyclodextrin conjugate is detectable. The redox‐sensing abilities of the synthesized conjugates towards the bile salts were evaluated based on the observed guest‐induced changes in both the half‐wave potential and the current peak intensity of the electroactive moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号