首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Free‐radical homopolymerization and copolymerization of phenacyl methacrylate (PAMA) with methyl methacrylate (MMA) was done using 2,2′‐azobis(isobutyronitrile) (AIBN) as the initiator in 1,4‐dioxane at 60°C. 1H‐NMR and FT‐IR spectroscopy confirmed the existence of OCH2 and CH signals and unsaturated structure and CN stretch at the chain end of low molecular weight poly(phenacyl methacrylate) [poly(PAMA)], respectively. The six‐membered ring with both ester and ether at the end group was detected by 1H‐NMR. In the poly(PAMA), the end groups formed due to chain transfer reactions were found in large concentrations. The mechanism of the formation of end groups has been presented. The behavior of free radical polymerization of PAMA was compared with that of phenoxycarbonylmethyl methacrylate (PCMMA). The molecular weight distribution of the homo and copolymers was determined using gel permeation chromatography. Thermal properties of the polymers were determined using differential thermal analysis (DTA) and thermogravimetric analysis (TGA).  相似文献   

2.
以偶氮二异丁腈为引发剂,CuBr2/bpy为催化体系,甲基丙烯酸缩水甘油酯(GMA)通过反向原子转移自由基聚合反应合成了聚甲基丙烯酸缩水甘油酯(PGMA),其结构经1H NMR,IR和GPC确证。聚合反应符合活性自由基聚合特征,在聚合过程中GMA转化率和PGMA分子量随反应时间的延长而增大,分子量分布较窄。  相似文献   

3.
洪春雁  潘才元 《化学通报》2003,66(12):807-814
介绍了稳定自由基聚合的反应原理、引发剂设计,以及用稳定自由基聚合制备嵌段共聚物的几种方法:连续加料法、双官能团引发剂法和一步法。对于光引发聚合的原理及硫自由基的稳定性对聚合反应的影响也进行了讨论。  相似文献   

4.
The use of the reverse atom transfer radical polymerization (RATRP) to end-functionalize poly(methyl methacrylate) (PMMA) with fullerenes, e.g. C60 and C70 was described in this paper. The Cl-terrninated PMMA was prepared via RATRP with designed molecular weight and narrow molecular weight distributions, and then directly used to react with fullerenes to produce C60(C70) terminated PMMA polymers in the presence of CuBr/Cu/bipy or FeCl2/bipy catalysts. The resultant polymers exhibit good solubility in some common organic solvents, e.g. THF, CHCl3 and toluene, and were well structurally characterized by a variety of physical techniques.  相似文献   

5.
在0~100℃温度范围内,由原子转移自由基聚合方法,采用助催化和非助催化体系,引发甲基丙烯酸甲酯聚合,利用13CNMR测定聚甲基丙烯酸甲酯的等规度.发现原子转移自由基聚合仍以间同立构为主,随着聚合温度的升高间同立构等规度降低,与通常自由基聚合对有规立构控制特征相似.助催化剂异丙醇铝和活性端羰基配位,对聚合物的立构规整性有一定的影响.  相似文献   

6.
Summary: A low‐molar‐mass poly(acrylic acid) with a narrow molar‐mass distribution, prepared by SG1 nitroxide‐mediated controlled free‐radical polymerization, was subjected to end‐group analysis to confirm its living nature. 1H and 31P NMR spectroscopy confirmed the presence of the SG1‐based alkoxyamine end group. Furthermore, chain extension with styrene and n‐butyl acrylate demonstrated the ability of the homopolymer to initiate the polymerization of a second block. These results open the door to the synthesis of poly(acrylic acid)‐based block copolymers by direct nitroxide‐mediated polymerization of acrylic acid.

Acrylic acid polymerization using an alkoxyamine initiator based on SG1 (N‐tert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl) nitroxide resulting in a homopolymer capable of initiating the polymerization of a second block.  相似文献   


7.
Allyl methacrylate was polymerized in CCl4 solution by α,α′‐azoisobutyronitrile at 50, 60, and 70°C. The kinetic curves were auto‐accelarated types at 60 and 70°C, but almost linear at 50°C. Arrhenius activation energy was 77.5 kJ/mol. The polymer was insoluble in common organic solvents. It was characterized by FT‐IR, NMR, DSC, TGA and XPS methods. About 98–99% of allyl side groups were remained as pendant even after completion of the polymerization. The spectroscopic and thermal results showed that polymerization is not a cyclopolymerization type, but may have end group cyclization. The high molecular weight is the main cause of a polymer being insoluble even in the early stage of the polymerization. Molecular weight of 1.1×106 for a soluble polymer fraction was measured by light scattering method. The Tg of polymer was 94°C, and after curing at 150–200°C, increased to 211°C. The thermal pyrolysis of polymer at about 350°C gave an anhydride by linkage type degradation, and side group cyclization. The XPS analysis showed the presence of radical fragments of AIBN (initiator) and CCl4 (solvent) associated with oligomers.  相似文献   

8.
活性 (或称可控 )自由基聚合研究是目前高分子科学的研究热点之一[1~ 8] .活性自由基聚合制备的聚合物具有分子量随转化率提高而线性增加、分子量分布窄和聚合反应为一级反应动力学等特点 .自由基开环聚合所得产物体积收缩小 ,某些含有不饱和双键的螺环单体发生双开环聚合时甚至发生体积膨胀 ;开环聚合还可在聚合物主链上引入各种官能团 ,如酯基、碳酸酯基、酮基等 [9~ 12 ] .因此 ,用活性聚合的方法对自由基开环聚合的分子量和分子量分布进行控制 ,可以制备出具有各种不同结构和性能的新聚合物 . Wei等 [13] 报道了利用稳定自由基法实现…  相似文献   

9.
陈旺  张卡卡  陈道勇  江明 《化学学报》2010,68(13):1308-1312
报导了一种新的制备不对称粒子的简单方法. 首先, 利用旋转涂膜法在云母片表面涂上一层聚4-乙烯基吡啶(P4VP)薄膜, 并且P4VP薄膜中分散有自由基引发剂偶氮二异丁腈(AIBN)和二乙烯基苯(DVB); 然后将云母片插入溶解有N-异丙基丙烯酰胺(NIPAM)的水溶液, 在氮气保护下升高温度, 实施自由基聚合. 聚合起始阶段, AIBN分解的自由基主要是在P4VP薄膜中引发DVB聚合. 由于相分离, DVB聚合后形成的PDVB在P4VP中形成粒子. 随着聚合的进行, 由于PDVB粒子的不断长大或向水/P4VP界面迁移, 使得粒子的一侧暴露在水相中. 在界面上, PDVB粒子上的大分子自由基或AIBN新分解产生的自由基与PDVB中剩余双键继续反应形成的大分子自由基引发水相中的NIPAM反应, 从而在粒子的一侧形成PNIPAM接枝; 而PDVB粒子的另一侧则嵌在P4VP膜中, 不会参加接枝反应. 最后, 实施与P4VP层分离后即可得到两亲性的PDVB-PNIPAM不对称粒子.  相似文献   

10.

HCl elimination in low ratio was first carried out from poly(vinyl chloride) to increase allylic chlorines. Partially dehydrochlorinated poly(vinyl chloride), having a macroinitiator effect, was grafted with tert‐butyl methacrylate via atom transfer radical polymerization in the presence of CuBr/2,2′‐bipyridine at 64°C in tetrahydrofuran. Original poly(vinyl chloride) was also grafted with tert‐butyl methacrylate under the same conditions to compare with that of partially dehydrochlorinated poly(vinyl chloride). The graft copolymers were characterized by elemental analysis, FTIR, 1H and 13C‐NMR, differential scanning calorimetry, and gel permeation chromatography (GPC). Thermal stabilities of the graft copolymers were investigated by thermogravimetric analysis as compared with those of the macroinitiators.  相似文献   

11.
Amphiphilic star shaped polymers with poly(ethylene oxide) (PEO) arms and cross‐linked hydrophobic core were synthesized in water via either conventional free radical polymerization (FRP) or atom transfer radical polymerization (ATRP) techniques using a simple “arm‐first” method. In FRP, PEO based macromonomers (MM) were used as arm precursors, which were then cross‐linked by divinylbenzene (DVB) using 2,2′‐azoisobutyronitrile (AIBN). Uniform star polymers ( < 1.2) were achieved through adjustment of the ratio of PEO MM, DVB, and AIBN. While in case of ATRP, both PEO MM, and PEO based macroinitiator (MI) were used as arm precursors with ethylene glycol diacrylate as cross‐linker. Even more uniform star polymers with less contamination by low MW polymers were obtained, as compared to the products synthesized by FRP.

  相似文献   


12.
Summary: The effect of polymer end group on the morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles was investigated on the basis of experimental observations and theoretical predictions. Both polymers with potassium persulfate (KPS)-derived hydrophilic end group(s) and 2,2′-azobis(isobutyronitrile) (AIBN)-derived hydrophobic end group(s) were synthesized by emulsifier-free emulsion polymerizations and solution polymerizations, respectively. Composite particles with the same end groups were prepared by release of toluene from PS/PMMA/toluene (1/1/24, w/w/w) droplets dispersed in an aqueous solution of sodium dodecyl sulfate (SDS). At a low SDS concentration, when the polymers with KPS-derived end group(s) were employed, acornlike particles were formed. On the other hand, when the polymers with AIBN-derived end group(s) were used, particles having a dimple were obtained. The interfacial tensions between toluene solutions of the polymers and SDS aqueous medium were lower for KPS-derived end group(s) than for AIBN-derived end group(s), and the difference was much larger for PS phase than PMMA phase. The predicted morphologies obtained from calculation of the minimum total interfacial free energy using the interfacial tensions agreed well with the experimentally observed morphologies in both cases. Moreover, the morphology of PS/PMMA composite particles with different end groups was also examined.  相似文献   

13.
自由基聚合近20年的发展   总被引:5,自引:1,他引:5  
自由基聚合是在上世纪50年代发展起来的,已成为工业生产高分子产品的重要技术。自由基聚合由通用自由基聚合而发展为今天的活性/控制自由基聚合,是近20多年的事情。通用自由基合的研究主要是高活性引发剂、氧化还原体系及多功能引发体系,ESR和激光技术在动力学和自由基精细结构测定的应用等。而活性自由基聚合由最初的引发转移终止剂活性自由基聚合(iniferter),演变为氮氧自由基调控聚合(NMP)或稳定自由基聚合(SFRP),原子转移自由基聚合(ATRP),茂钛金属/环氧化物自由基开环引发聚合,可逆加成断裂链转移(RAFT)聚合,碘转移自由基聚合和有机碲、有机锑调控聚合等活性/控制自由基聚合。本文就以上各方面的研究进展进行简要的综述。  相似文献   

14.
汪泽  任娟  李莉  陈阳 《化学教育》2020,41(12):86-90
通过Python语言开发了一款教学用自由基聚合反应数值模拟器FRPython。该程序通过对自由基聚合反应体系的常微分方程组进行数值模拟,得到引发剂自由基浓度、链自由基浓度、动力学链长,以及聚合度分布等信息。以聚甲基丙烯酸甲酯聚合体系的数值模拟为例,FRPython可直观有效地演示自由基聚合反应过程,同时避免了稳态假设、方程推演等较为深奥的内容,为药学专业高分子化学相关知识的教学提供有益参考。  相似文献   

15.
聚氧乙烯[Poly(ethylene glycol),PEG]是一种稳定、无毒且具有良好的生物惰性和非免疫性、非抗原性的水溶性聚合物,在生物医学和生物技术领域具有广泛的应用背景和重要的研究意义,大量研究表明,多臂的PEG由于其枝状结构具有比线型结构更好的性能,然而,通常多臂,PEG采用Corefirst阴离子开环聚合环氧乙烷的方法,这种方法对聚合条件及设备等要求较高,限制了多臂的PEG的应用。  相似文献   

16.
Summary: Procedures are developed to estimate kinetic rate coefficients from available rate data for the free radical solution polymerization of butyl acrylate at 50 °C. The analysis is based upon a complete mechanistic set that includes the formation of mid‐chain radicals through backbiting and their subsequent reaction, and contains no assumptions on how the rate coefficient for cross‐termination of mid‐chain and end‐chain radicals is related to the two homo‐termination rate coefficients. After a thorough statistical analysis, the results of the fitting are combined with other recent literature data to provide a complete set of individual rate coefficients for the butyl acrylate system. Monomer addition to a mid‐chain radical is estimated to be slower than addition to a chain‐end radical by a factor of more than 400. The termination of two mid‐chain radicals is estimated to be two orders of magnitude slower than termination of two end‐chain radicals, with the cross‐termination rate coefficient close to the geometric mean.

Formation of a mid‐chain radical by intramolecular chain transfer to polymer by a chain‐end radical.  相似文献   


17.
稳定自由基存在下苯乙烯聚合的加速剂   总被引:1,自引:0,他引:1  
研究了稳定自由基存在下苯乙烯的活性聚合,发现在β-酮酸酯-乙酰乙酸乙酯,乙二酸二乙酯,1,3-二酮-乙酰丙酮的少量存在下,苯乙烯聚合速率显著增加,分子量可控,分子量在布较窄。而乙酰丙酮较大量存在下,聚苯乙烯分散性稍微变宽。  相似文献   

18.
自由基活性聚合的进展   总被引:1,自引:0,他引:1  
自由基活性聚合是人们在们在近年来探索的一类新的聚合反应.本文简要地综述了这类反应的进展.  相似文献   

19.
The authors apply the method of moments to the study of network formation in continuous flow stirred reactors when chain transfer to polymer and coupling are present in the reaction scheme. This approach leads to analytical solutions for the various moments involved. The authors start by assuming that the rate of coupling is proportional to the length of dead chains, which allow them to review and extend previous work in this area. This is followed by similar derivations when a coupling agent is present and the rate of coupling is proportional to the number of coupling groups that such agent leaves in dead polymer molecules, demonstrating that higher values of second order moments can be reached at lower levels of unreacted coupling agent.

  相似文献   


20.
A methacrylate‐functionalized phosphorescent Ir(III)‐complex has been synthesized, characterized, and applied as a monomer in radical copolymerizations. Together with methyl methacrylate, the complex has been copolymerized under free radical polymerization conditions. Aiming for host‐guest‐systems, applicable e.g. in organic light emitting devices (OLEDs), the complex was further copolymerized with a methacrylate‐functionalized carbazole derivative using the atom transfer radical polymerization technique. Applying gel permeation chromatography, in combination with a photodiode array detector, could clearly prove the formation of the copolymers. The optical properties of the photoactive monomers as well as the copolymers were investigated by absorption and emission spectroscopy (in solution). For the carbazole‐copolymer, the emission originates almost exclusively from the complex. This provides evidence of an efficient intrachain energy transfer, which makes the system an interesting candidate for potential OLED applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号