首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The living/controlled radical polymerization of styrene was investigated with a new initiating system, DCDPS/FeCl3/PPh3, in which diethyl 2,3‐dicyano‐2,3‐diphenylsuccinate (DCDPS) was a hexa‐substituted ethane thermal iniferter. The polymerization mechanism belonged to a reverse atom transfer radical polymerization (ATRP) process. The polymerization was controlled closely in bulk (at 100 °C) or in solution (at 110 °C) with a high molecular weight and quite narrow polydispersity (Mw/Mn = 1.18 ∼ 1.28). End‐group analysis results by 1H NMR spectroscopy showed that the polymer was ω‐functionalized by a chlorine atom, which also was confirmed by the result of a chain‐extension reaction in the presence of a FeCl2/PPh3 or CuCl/bipy (2,2′‐bipyridine) catalyst via a conventional ATRP process. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 101–107, 2000  相似文献   

2.
The living radical polymerization of styrene in bulk was successfully performed with a tetraethylthiuram disulfide/copper bromide/2,2′‐bipyridine (bpy) initiating system. The initiator Et2NCS2Br and the catalyst cuprous bromide (CuBr) were produced from the reactants in the system through in situ atom transfer radical polymerization (ATRP). A plot of natural logarithm of the ratio of original monomer concentration to monomer concentration at present, ln([M]0/[M]) versus time gave a straight line, indicating that the kinetics was first‐order. The number‐average molecular weight from gel permeation chromatography (GPC) of obtained polystyrenes did not agree well with the calculated number‐average molecular weight but did correspond to a 0.5 initiator efficiency. The polydispersity index (i.e., the weight‐average molecular weight divided by the number‐average molecular weight) of obtained polymers was as low as 1.30. The resulting polystyrene with α‐diethyldithiocarbamate and ω‐Br end groups could initiate methyl methacrylate polymerization in the presence of CuBr/bpy or cuprous chloride/bpy complex catalyst through a conventional ATRP process. The block polymer was characterized with GPC, 1H NMR, and differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4001–4008, 2001  相似文献   

3.
A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of "living" character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.  相似文献   

4.
Photo-mediated atom transfer radical polymerization (ATRP) of acrylonitrile (AN) was carried out at 25°C in N,N-dimethyl formamide (DMF) with aniline as photoinitiator. Polyacrylonitrile (PAN) with predictable average molecular weight and narrow molecular weight distribution was synthesized with 2-Bromopropionitrile (BPN) as ATRP initiator and FeCl3·6H2O/Triphenylphosphine (PPh3) as the catalyst. The obtained kinetics showed that the photoinduced Fe-mediated ATRP of AN provided a route to synthesize well defined PAN with narrow molecular weight distribution (Mw/Mn). The living character of photoinduced Fe-mediated ATRP of AN was verified by the linear increase of molecular weights with monomer conversion and the molecular weights are in good agreement with the theoretic values. In addition, the chain extension experiments were successfully conducted under the same conditions. The periodic light on-off process was investigated for the photoinduced Fe-mediated ATRP of AN. The obtained PAN was characterized by 1H nuclear magnetic resonance and gel permeation chromatography. The brominated PAN was used to perform chain-extension with AN as macroinitiator in order to verify the living nature of photoinduced ATRP of AN-Br.  相似文献   

5.
"Living"/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85℃. Thc numberaverage molecular weight (M_n) increases linearly with monomer conversion and the rate of polymerization is first order withrespect to monomer concentration. The M_w of PEMA ranges from 3900 to 17600 and the polydispersity indices are quitenarrow (1.09~1.22). The conversion can reach up to~100% and M_w of the polymers obtained is close to that designed. Thepolymerization mechanism belongs to the reverse atom transfer radical polymerization (ATRP). The polymer was end-functionalized by chlorine atom, which acts as a macroinitiator to proceed extension polymerization in the presence ofCuBr/bipy catalyst system via an ATRP process. The presence of ω-chlorine in the PEMA obtained was identified by ~1H-NMR spectrum.  相似文献   

6.
The effect of two initiators, so-called dual initiators system on atom radical transfer polymerization (ATRP), were studied with dimethyl-2,6-dibromohepanedioate (DMDBHD) and ethyl-2-bromoisobutyrate (EBIB). Cu(I)Br as catalyst and N,N,N??,N??,N??-pentamethyl-diethylenetriamine as ligand were employed for styrene ATRP. Interestingly, bimodal MWD were shown for the dual initiator system, and one of the peaks had higher molecular weight (MW) and the other had lower MW compared to a one-initiator system. The lower MW peak in bimodal peaks seemed to be mainly resulting from EBIB and the higher MW peak from DMDBHD. Furthermore, methylaluminoxane (MAO) was fed into the ATRP reaction to observe the effect of it on ATRP. As the MAO/CuBr molar ratio in feed increased from 0 to 1, the molecular weight and conversion increased without a notable change in PDI and curve shape of GPC. The conversion in the presence of MAO was also increased with the increase in MAO/CuBr molar ratio. The effect of Cp*TiCl3 on the ATRP was opposite to that of MAO. As the Cp*TiCl3/CuBr molar ratio increased from 0 to 1, the conversion of polymerization was down from 56 to 35%. Furthermore, the molecular weight was drastically decreased from 10,000 to 5,500, but their PDI did not show a significant change. These results can elucidated by the retarding effect of Cp*TiCl3 on the propagation of polymerization.  相似文献   

7.
Methyl methacrylate (MMA) and styrene (St) have been radically polymerized in the presence of chlorotrimethylsilane and CuCl/N,N,N′,N″,N″-pentamethyldiethyltriamine (Me3SiCl/CuCl/PMDETA). An analysis of the resultant polymers by 1H NMR discloses terminal silyl group and chlorine atom in all the obtained polymers. Kinetics studies have been carried out by measuring monomer conversions and polymer molecular weights against polymerization time. The results indicate that, for both MMA and St polymerizations, the monomer conversions exhibit a quasi-linear relationship with polymerization time, and the polymer number-average molecular weight (Mn) also increases with monomer conversion. The molecular weights of both PS and PMMA exceed one hundred thousand. Regardless of molecular weight, all the polymers show narrow molecular distributions (Mw/Mn = 1.2-1.5). These polymerization reactions are speculated to follow a mechanism similar to that of atom transfer radical polymerization (ATRP).  相似文献   

8.
2‐[(Diphenylphosphino)methyl]pyridine (DPPMP) was successfully used as a bidentate ligand in the iron‐mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with various initiators and solvents. The effect of the catalytic system on ATRP was studied systematically. Most of the polymerizations with DPPMP ligand were well controlled with a linear increase in the number‐average molecular weights (Mn) versus conversion and relatively low molecular weight distributions (Mw/Mn = 1.10–1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values. Initially added iron(III) bromide improved the controllability of the polymerization reactions in terms of molecular weight control. The ratio of ligand to metal influenced the controllability of ATRP system, and the optimum ratio was found to be 2:1. It was shown that ATRP of MMA with FeX2/DPPMP catalytic system (X = Cl, Br) initiated by 2‐bromopropionitrile (BPN) was controlled more effectively in toluene than in polar solvents. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 56.7 KJ mol?1. In addition, reverse ATRP of MMA was able to be successfully carried out using AIBN in toluene at 80 °C. Polymerization of styrene (St) was found to be controlled well by using the PEBr/FeBr2/DPPMP system in DMF at 110 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2922–2935, 2008  相似文献   

9.
This study aimed at polymerization of methyl methacrylate with novel catalysts in the atom transfer radical polymerization (ATRP) condition at 90 °C. This was accomplished using CuBr/N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (CuBr–AEAPTMS) as a homogeneous catalyst and one time with CuBr@AEAPTMS/SBA-15 as a heterogeneous catalyst. Catalysts were characterized using TGA, FT-IR, and UV–Vis spectroscopy. The structural analysis of the polymer was carried out by 13C NMR spectroscopy and GPC. Three characteristic parts of polymer produced by ATRP method including the initiator, monomer units, and end group was shown in 13C NMR spectra. In addition, the presence of C–Br unit showed that the polymerization process is alive. The 1H NMR analysis was used for kinetic investigation of methyl methacrylate polymerization with homogeneous and heterogeneous catalysts that showed high monomer conversion (98 and 90% after 35 min, respectively) and good control of molecular weight with a dispersity (Р= 1.5–1.7). In addition, the plot of ln ([monomer]0/[monomer] t ) versus time gave linear relationships indicating a constant concentration of the propagating species throughout the polymerization. Finally, the results of the polymerization using heterogeneous catalyst compared with homogeneous catalyst revealed that it was according to ATRP method.  相似文献   

10.
The atom transfer radical polymerization (ATRP) of n-octyl acrylate (OA) was successfully carried out using ethyl-2-bromobutyrate as an initiator, and CuBr/2,2-bipyridine (bpy) as a catalyst under microwave irradiation (MI) at 76.8 °C. The polymerization of n-octyl acrylate under MI showed linear first-order rate plots, a linear increase of the number-average molecular weight Mn with conversion, and low polydispersities, 1.1<Mw/Mn<1.4, where Mw is weight-average molecular weight. The ATRP of n-octyl acrylate is well controlled. Under the same experimental conditions, the apparent rate constant, kpapp, under MI is larger apparently than that under conventional heating. In addition, the effects of concentration of catalyst and other factors on polymerization are reported.  相似文献   

11.
In this study, 2,7-bi-(N-penothiazinyl)fluorenone was employed as photocatalyst (PC), ethyl α-bromophenylacetate (EBP) as atom transfer radical polymerization (ATRP) initiator, and photo-induced metal-free ATRP of methyl methacrylate (MMA) was performed at 25°C under blue light irradiation. PMMAs with well-defined architectures and precisely controlled chain lengths were synthsized. The kinetics results confirmed that molecular weights increased linearly with monomer consumption. The molecular weight distributions (Mw/Mn) of the resultant PMMA were narrow. The polymerization was activated and deactivated by periodic light control process. 1H nuclear magnetic resonance spectrometer (NMR) and gel permeation chromatography (GPC) were used to characterize the obtained PMMAs. The living characters of the polymerization system were further confirmed by chain extension of from the PMMA-Br macroinitiator.  相似文献   

12.
In this work, zero‐valent iron (Fe(0)) (powder or wire) and elemental bromine (Br2) were used as the catalysts for atom transfer radical polymerization (ATRP) of styrene (St) without any additional initiator at 110 °C. The polymerizations happened with controlled evidence at appropriate molar ratio of Fe(0) to Br2: a remarkable increase of molecular weights with St conversions, the narrow molecular weight distributions and living polymer chains end‐capped by Br. More Br2 or less Fe(0) led to a slow polymerization rate but an improved control over molecular weights. After examining the polymer chain ends by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, it was concluded that the polymerization was initiated by thermal self‐initiation, and regulated by the in situ generated FeIIIBr3. The results suggested that the Fe(0)/Br2 catalyzing polymerization was a classical ATRP process with easier operation and more economical components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
New graft copolymers of β‐pinene with methyl methacrylate (MMA) or butyl acrylate (BA) were synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). β‐Pinene polymers with predetermined molecular weights and narrow molecular weight distributions (MWDs) were prepared by living cationic polymerization with the 1‐phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, and the resultant polymers were brominated quantitatively by N‐bromosuccinamide in the presence of azobisisobutyronitrile, yielding poly(β‐pinene) macroinitiators with different bromine contents (Br/β‐pinene unit molar ratio = 1.0 and 0.5 for macroinitiators a and b , respectively). The macroinitiators, in conjunction with CuBr and 2,2′‐bipyridine, were used to initiate ATRP of BA or MMA. With macroinitiator a or b , the bulk polymerization of BA induced a linear first‐order kinetic plot and gave graft copolymers with controlled molecular weights and MWDs; this indicated the living nature of these polymerizations. The bulk polymerization of MMA initiated with macroinitiator a was completed instantaneously and induced insoluble gel products. However, the controlled polymerization of MMA was achieved with macroinitiator b in toluene and resulted in the desired graft copolymers with controlled molecular weights and MWDs. The structures of the obtained graft copolymers of β‐pinene with (methyl)methacrylate were confirmed by 1H NMR spectra. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1237–1242, 2003  相似文献   

14.
Triphenylmethyl chloride (TPMCl) was employed for the first time as the initiator of atom transfer radical polymerization (ATRP) of styrene in the presence of CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst and cyclohexanone as solvent. The kinetic plot was first-order with respect to monomer. A linear increase of number average molecular weight (Mn) vs. monomer conversion was observed, and the molecular weight distribution (MWD) was relatively narrow (Mw/Mn = 1.2-1.5). 1H NMR spectra revealed the ω-Cl group at the chain end. Another two initiators, benzyl chloride (BzCl) and diphenylmethyl chloride (DPMCl), were also employed in contrast with triphenylmethyl chloride to investigate the influence of phenyl numbers on the polymerization.  相似文献   

15.
It is known that it is difficult to polymerize carboxylic acid‐based monomer by atom transfer radical polymerization (ATRP) in polar solvents due to the protonation of ligand caused by acidic dissociation of the monomer. In this study, precipitation reverse ATRP of acrylic acid (AA) was carried out in supercritical carbon dioxide (scCO2), which is a nonpolar solvent to dissolve transition metal complexes, at 30 MPa and 45 °C. The polymerization proceeded smoothly and the conversion reached 86% for 3 h. After vending of scCO2, a dry poly(acrylic acid) (PAA) powder was obtained. Weight‐average molecular weight and polydispersity of the methylated PAA, which were measured by gel‐permeation chromatography after methyl esterification, were 3.5 × 104 and 2.07, respectively, indicating that the precipitation reverse ATRP proceeded with a bad control manner. However, chain extension of the methylated PAA with styrene was possible by ATRP in a bulk system. Moreover, PAA‐b‐polystyrene was successfully prepared in scCO2 directly by two‐step ATRP, although its molecular weight distribution was broad. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
MoO_2Br_2体系催化丁二烯聚合中烯丙基卤素的作用   总被引:2,自引:0,他引:2  
MoO2Br2-Al(i-Bu)2OPhCH3(-m)体系催化丁二烯1,2-聚合过程中添加C3H5X(X=Cl、Br和I)对聚合物分子量有较好的调节作用,其中以C3H5Br的调节作用最强,Mn从17.5×105降至3.5×105,但对催化活性有一定的影响.在测定催化体系的UV光谱、(13)C-NMR谱、聚合活性和聚合动力学参数的基础上,讨论了C3H5X在催化体系中的行为.  相似文献   

17.
Well‐defined organic/inorganic hybrid fluorinated star polymers were synthesized via atom transfer radical polymerization (ATRP) of 2,2,3,4,4,4‐hexafluorobutyl methacrylate (HFBMA) using octa(aminophenyl)silsesquioxane (OAPS) nano‐cage as initiator. For this purpose, OAPS was transformed into ATRP initiator by reacting with 2‐bromoisobutyrylbromide. ATR polymerization of HFBMA was carried out in trifluorotoluene at 75 °C using CuCl/2,2‐bipyridine or N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst system. GPC and 1H NMR data confirmed the synthesis of OAPS/PHFBMA hybrid star polymer. Kinetics of the ATR polymerization of HFBMA using OAPS nano‐cage initiator was also investigated. The OAPS/PHFBMA hybrid stars were found to be molecularly dispersed in solution (THF); however, TEM micrographs revealed the formation of spherical particles of ~ 120–180 nm by the OAPS/PHFBMA hybrid star polymer after solvent evaporation. Thermal characterization of the nanocomposites by differential scanning calorimetry (DSC) revealed a slightly higher glass transition temperature (Tg) (when compared with the linear PHFBMA) of higher molecular weight OAPS/PHFBMA hybrid star polymers. In contrast, lower Tg than the linear PHFBMA was observed for OAPS/PHFBMA of relatively lower molecular weight (but higher than the linear PHFBMA). Thermal gravimetric analysis (TGA) showed a significant retardation (by ~60 °C) in thermal decomposition of nanocomposites when compared with the linear PHFBMA. Additionally, surface properties were evaluated by measuring the contact angles of water on polymer surfaces. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7287–7298, 2008  相似文献   

18.
The copper‐catalyzed atom transfer radical polymerization (ATRP) of poly(propylene glycol) methacrylate (PPGM) in solution to produce linear and starlike polymers is reported, using methylethyl ketone as the solvent and a temperature of 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer without protecting hydroxyl end groups of monomer. The polymerizations were consistent with “living” or controlled processes, as revealed by the linear evolution of molecular weight with conversion. Increasing the [M]0:[I]0 ratio resulted in increasing molecular weights, whereas the polydispersity indices remained low (Mw/Mn < 1.4) even at high conversion. Decreasing the [CuBr]0:[I]0 ratio resulted in lower conversions, slightly larger polydispersities, and decreased molecular weights, likely resulting from a lower initiation efficiency. Polymers were characterized by 1H and 13C NMR; molecular weights of polymers with low degrees of polymerization were estimated by end‐group analysis from 13C NMR spectra obtained using distortionless enhancement by polarization transfer and the gated decoupling techniques. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 334–343, 2002  相似文献   

19.
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006  相似文献   

20.
IronIII chloride coordinated by pyromellitic acid was successfully used as the catalytic system in reverse atom transfer radical polymerization of MMA. Well-defined poly(methyl methacrylate) with narrow molecular weight distribution was synthesized in N,N-dimethylformamide at 80-110 °C. Chain extension was performed to confirm the living nature of the polymer. The presence of the end chloride atom on the resulting PMMA was demonstrated by 1HNMR spectroscopy. This catalyst system is effective for reverse ATRP of methacrylates but not for acrylates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号