共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
YanSHI ZhiFengFU YuDongZHANG ShuKeJIAO 《中国化学快报》2003,14(12):1289-1292
Comblike poly(methyl methacrylate) was synthesized by atom transfer radical polymerization of methyl methacrylate with poly(ethyl 2-bromoacrylate) as a macroinitiator, which was prepared by conventional free radical polymerization of ethyl 2-bromoacrylate. The obtained comblike polymers were characterized by GPC and ^1H NMR. 相似文献
3.
原子转移自由基聚合(ATRP)制备高密度端羟基聚氧乙烯梳状嵌段聚合物 总被引:3,自引:0,他引:3
聚氧乙烯[Poly(ethylene glycol),PEG]是一种稳定、无毒且具有良好的生物惰性和非免疫性、非抗原性的水溶性聚合物,在生物医学和生物技术领域具有广泛的应用背景和重要的研究意义,大量研究表明,多臂的PEG由于其枝状结构具有比线型结构更好的性能,然而,通常多臂,PEG采用Corefirst阴离子开环聚合环氧乙烷的方法,这种方法对聚合条件及设备等要求较高,限制了多臂的PEG的应用。 相似文献
4.
The use of the reverse atom transfer radical polymerization (RATRP) to end-functionalize poly(methyl methacrylate) (PMMA) with fullerenes, e.g. C60 and C70 was described in this paper. The Cl-terrninated PMMA was prepared via RATRP with designed molecular weight and narrow molecular weight distributions, and then directly used to react with fullerenes to produce C60(C70) terminated PMMA polymers in the presence of CuBr/Cu/bipy or FeCl2/bipy catalysts. The resultant polymers exhibit good solubility in some common organic solvents, e.g. THF, CHCl3 and toluene, and were well structurally characterized by a variety of physical techniques. 相似文献
5.
Bhaskar Jyoti Saikia Swapan Kumar Dolui 《Journal of polymer science. Part A, Polymer chemistry》2016,54(12):1842-1851
Self‐healable poly(methyl methacrylate) (PMMA) composites were fabricated with embedded glycidyl methacrylate (GMA) encapsulated poly(melamine‐formaldehyde) microcapsules. The matrix polymers were synthesized via Atom Transfer Radical Polymerization using two different initiators; one linear and another hexafunctional. As the so prepared polymer matrix retains living characteristics, it can initiate a healing reaction when the encapsulated monomer reaches the matrix due to formation or extension of a crack and thus healing the system covalently. The effect of number of initiating functionality on healing characteristic was studied using both linear and 6‐armed star PMMA having same targeted molecular weight. Both the systems were able to restore 100% original fracture toughness after healing. However, the polymer matrix prepared by hexafunctional initiator restored the fracture toughness much faster than that of the linear polymer matrix. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1842–1851 相似文献
6.
7.
8.
Mojtaba Abbasian Nafiseh Khakpour Aali Solmaz Esmaeily Shoja 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(9):966-975
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed. 相似文献
9.
在0~100℃温度范围内,由原子转移自由基聚合方法,采用助催化和非助催化体系,引发甲基丙烯酸甲酯聚合,利用13CNMR测定聚甲基丙烯酸甲酯的等规度.发现原子转移自由基聚合仍以间同立构为主,随着聚合温度的升高间同立构等规度降低,与通常自由基聚合对有规立构控制特征相似.助催化剂异丙醇铝和活性端羰基配位,对聚合物的立构规整性有一定的影响. 相似文献
10.
Jeffrey Pyun Tomasz Kowalewski Krzysztof Matyjaszewski 《Macromolecular rapid communications》2003,24(18):1043-1059
Atom transfer radical polymerization (ATRP) is a robust method for the preparation of well‐defined (co)polymers. This process has also enabled the preparation of a wide range of polymer brushes where (co)polymers are covalently attached to either curved or flat surfaces. In this review, the general methodology for the synthesis of polymer brushes from flat surfaces, polymers and colloids is summarized focusing on reports using ATRP. Additionally, the morphology of ultrathin films from polymer brushes is discussed using atomic force microscopy (AFM) and other techniques to confirm the formation of nanoscale structure and organization.
11.
12.
13.
原子转移自由基聚合(ATRP)是制备分子量以及分散度可控聚合物的重要途径。然而,受制于除氧步骤复杂、金属催化剂残留以及单体适用范围有限等因素,ATRP难以应用于批量制备功能化聚合物/共聚物材料,限制了其进一步应用。近年来提出和发展的酶催化聚合,为高效便捷除氧、拓展单体适用范围以及制备具有特殊(纳米)结构的纯净聚合物/共聚物提供了新思路。本文详细介绍了酶的结构与催化机理,以酶的种类进行分类,系统总结了具有不同结构的酶催化体系(包括过氧化辣根酶、血红蛋白、血红素、漆酶等)的催化机理、适用单体、优缺点及应用等;综述了酶以及酶模拟物催化ATRP体系的发展现状;最后,对酶催化ATRP的发展前景和挑战进行了探讨和展望。 相似文献
14.
负载型原子转移自由基聚合配体的合成及应用 总被引:1,自引:0,他引:1
用丙烯酸甲酯(MA)与负载到纳米二氧化硅有机/无机杂化粒子上的三乙烯四胺(TETA)进行Michael加成反应,合成了负载型原子转移自由基聚合(ATRP)配体。将其用于甲基丙烯酸甲酯(MMA)的ATRP,结果表明,动力学曲线表现为ln[c(M0)/c(Mt)](c(M0)为单体起始浓度,c(Mt)为反应时间t时单体浓度)与时间线性相关,分子量随转化率线性增加。可以通过离心轻易将催化体系从聚合物中分离出来,回收的催化体系可再次用于MMA的ATRP,且聚合反应仍具有可控/活性的特性,克服了传统ATRP中聚合后去除含过渡金属催化体系的困难。 相似文献
15.
《Macromolecular rapid communications》2017,38(21)
To address the challenge of metal contamination, a “graft from” approach via organocatalyzed atom transfer radical polymerization (O‐ATRP) is developed to synthesize poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) graft copolymers. N‐phenylphenothiazine is utilized as a model organic photoredox catalyst for catalyzing the (co)polymerization of methyl methacrylate (MMA), methacrylate (MA), and n‐butyl acrylate (BA). By employing this technique, high temporal control of polymerization and graft content are achieved. A series of P(VDF‐co‐CTFE)‐g‐PMMA, P(VDF‐co‐CTFE)‐g‐PMA, and P(VDF‐co‐CTFE)‐g‐PBA is prepared under mild conditions. The resultant graft copolymer can be used as macroinitiator to re‐initiate O‐ATRP to synthesize P(VDF‐co‐CTFE)‐g‐(PMMA‐b‐PMA), which might exhibit the potential application as novel dielectric material. 相似文献
16.
17.
以水为反应介质, 采用原子转移自由基聚合(ATRP), 在70 ℃下合成了末端为溴原子的聚丙烯酰胺预聚体(PAM-Br). 利用水相凝胶渗透色谱(GPC)对PAM-Br的相对分子质量和分子量分布进行了表征, 结果表明: 单体浓度、单体与引发剂物质的量之比和反应时间对PAM-Br的分子量及其分布有较大的影响, 在较低AM单体与引发剂物质的量比条件下, 其聚合过程符合ATRP的基本规律. 进而使PAM-Br预聚体末端的溴原子与甲基丙烯酸(MAA)进行亲核取代反应, 得到了末端带有不饱和双键的大分子单体(MAA-PAM). 并利用霍夫曼降解制备出了部分胺解的聚乙烯胺(MAA-PVAm)大分子单体, 其结构由傅里叶变换红外(FTIR)和核磁共振仪(NMR)的表征得到了确定. 以得到的大分子单体为反应性分散稳定剂, 与苯乙烯在乙醇/水的混合介质中进行分散共聚反应, 制得了聚苯乙烯接枝MAA-PVAm (PS-g-PVAm)复合微球, 由扫描电子显微镜(SEM)观察发现: 微球保持规整的球形结构, 粒径分布均一, 有较好的单分散性. 相似文献
18.
《高分子科学杂志,A辑:纯化学与应用化学》2013,50(6):637-647
Abstract The behavior of benzyl bromide functionalized poly(phenyleneethynylene)s as macroinitiators in the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was investigated. The 1H NMR observation of the ATRP using the exclusively para‐linked poly(phenyleneethynylene) macroinitiator PPE1A, and the low molecular weight initiator R‐BzBr, respectively, revealed lower reactivity for the macroinitiator. Comparison of graft copolymers, which were obtained from ATRP of MMA with PPE1A and the partially meta‐linked poly(phenyleneethynylene) PPE1B, showed higher reactivity in the case of PPE1B, expressed by a larger degree of polymerization in the PMMA side chains, as well as higher initiatior efficiency. This might be caused by better solubility of the less symmetric PPE1B. Investigation of the graft copolymers PPE2A and PPE2B was carried out by means of 1H NMR spectroscopy, gel permeation chromatography (GPC) as well as UV/vis spectroscopy. Impairment of the delocalized π‐electron system of the conjugated polymers during the ATRP was not detectable. 相似文献
19.
20.
The telechelic α,ω‐alkyne‐poly(methyl methacrylate) (alkyne‐PMMA‐alkyne) was synthesized by single electron transfer radical coupling (SETRC) reaction of α‐alkyne, ω‐bromine‐poly(methyl methacrylate) (alkyne‐ PMMA‐Br). The propargyl 2‐bomoisobutyrate (PgBiB) was first prepared to initiate atom transfer radical polymerization (ATRP) of methyl methacrylate at 45°C using CuCl/1,1,4,7,10,10‐hexamethyl triethylenetetramine (HMTETA) as homogeneous catalytic system. Then the SETRC reaction was conducted at room temperature in the presence of nascent Cu(0) and N,N,N′,N′ ′,N′ ′‐pentamethyldiethyllenetriamine (PMDETA). The precursor alkyne‐PMMA‐Br and coupled product alkyne‐PMMA‐alkyne were characterized by GPC and 1H NMR in detail. 相似文献