首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two FeO 3 isomers were prepared and characterized using matrix isolation infrared spectroscopy and theoretical calculations. The iron monoxide molecules produced from laser evaporation of the bulk iron oxide target react with dioxygen in solid argon to form the (eta (2)-O 2)FeO complex spontaneously on annealing. The (eta (2)-O 2)FeO complex was predicted to have a (5)B 2 ground state with a planar C 2 v structure, in which the O 2 fragment is side-on bonded to the iron center. The (eta (2)-O 2)FeO complex rearranges to the more stable iron trioxide isomer upon visible light (lambda > 500 nm) irradiation. The iron trioxide molecule was predicted to have a closed-shell singlet ground state with a planar D 3 h symmetry, in which the iron possesses a +6 oxidation state.  相似文献   

2.
The reactions of scandium atoms and O(2) have been reinvestigated using matrix isolation infrared spectroscopy and density functional theory calculations. A series of new oxygen-rich scandium oxide/dioxygen complexes were prepared and characterized. The ground state scandium atoms react with dioxygen to form OSc(eta(2)-O(3)), a side-on bonded scandium monoxide-ozonide complex. The OSc(eta(2)-O(3)) complex rearranges to a more stable Sc(eta(2)-O(2))(2) isomer under visible light irradiation, which is characterized to be a side-on bonded superoxo scandium peroxide complex. The homoleptic trisuperoxo scandium complex, Sc(eta(2)-O(2))(3), and the superoxo scandium bisozonide complex, (eta(2)-O(2))Sc(eta(2)-O(3))(2), are also formed upon sample annealing. The Sc(eta(2)-O(2))(3) complex is determined to have a D(3h) symmetry with three equivalent side-on bonded superoxo ligands around the scandium atom. The (eta(2)-O(2))Sc(eta(2)-O(3))(2) complex has a C(2) symmetry with two equivalent side-on bonded O3 ligands and one side-on bonded superoxo ligand.  相似文献   

3.
This report presents the preparation and characterization of two interconvertible titanium ozonide complexes using matrix-isolation infrared spectroscopy and density functional theory calculations (B3LYP/6-311+G(d)). The titanium atoms react with O2 to form primarily the inserted TiO2 molecules in solid argon, which further react with O2 to form OTi(eta2-O2)(eta2-O3) via a weakly bonded TiO2(O2)2 intermediate. The OTi(eta2-O2)(eta2-O3) complex is characterized as [(TiO)2+(O2-)(O3-)], that is, a side-on-bonded oxo-superoxo titanium ozonide complex. The side-on-bonded complex rearranges to a less stable end-on-bonded OTi(eta2-O2)(eta1-O3) isomer under 532 nm laser irradiation, while the reverse reaction (end-on to side-on) proceeds upon sample annealing.  相似文献   

4.
Hafnium atom oxidation by dioxygen molecules has been investigated using matrix isolation infrared absorption spectroscopy. The ground-state hafnium atom inserts into dioxygen to form primarily the previously characterized HfO(2) molecule in solid argon. Annealing allows the dioxygen molecules to diffuse and react with HfO(2) to form OHf(eta(2)-O(2))(eta(2)-O(3)), which is characterized as a side-on bonded oxo-superoxo hafnium ozonide complex. Under visible light (532 nm) irradiation, the OHf(eta(2)-O(2))(eta(2)-O(3)) complex either photochemically rearranges to a more stable Hf(eta(2)-O(2))(3) isomer, a side-on bonded di-superoxo hafnium peroxide complex, or reacts with dioxygen to form an unprecedented homoleptic tetra-superoxo hafnium complex: Hf(eta(2)-O(2))(4). The Hf(eta(2)-O(2))(4) complex is determined to possess a D(2d) geometry with a tetrahedral arrangement of four side-on bonded O(2) ligands around the hafnium atom, which thus presents an 8-fold coordination. These oxygen-rich complexes are photoreversible; that is, formation of Hf(eta(2)-O(2))(3) and Hf(eta(2)-O(2))(4) is accompanied by demise of OHf(eta(2)-O(2))(eta(2)-O(3)) under visible (532 nm) light irradiation and vice versa with UV (266 nm) light irradiation.  相似文献   

5.
A manganese atom reacts with dioxygen to form the previously characterized MnO 2 molecule in solid argon under UV-visible light irradiation. Subsequent sample annealing allows the dioxygen molecules to diffuse and to react with MnO 2 to give the (eta (2)-O 2)MnO 2 complex, which is characterized to be a side-on bonded peroxo manganese dioxide complex. The manganese tetraoxide MnO 4, which was predicted to be less stable than the (eta (2)-O 2)MnO 2 isomer, was not observed. However, the (eta (2)-O 2)MnO 2 complex reacts with another weakly coordinated dioxygen to give the (eta (2)-O 2)MnO 4 complex via visible light irradiation, in which the manganese tetraoxide is coordinated and stabilized by a side-on bonded O 2 molecule. Manganese dimer reacts with dioxygen to form the cyclic Mn(mu-O) 2Mn cluster spontaneously upon annealing, which further reacts with dioxygen to give the (eta (2)-O 2) 2Mn(mu-O) 2Mn cluster, a side-on bonded disuperoxide complex with a planar D 2 h structure.  相似文献   

6.
The reactions of beryllium atoms with dioxygen were reinvestigated by matrix isolation infrared absorption spectroscopy. Besides the previously reported linear OBeO and cyclic Be(2)O(2) molecules, two interconvertible beryllium ozonide complexes were prepared and characterized. The BeOBe(η(2)-O(3)) complex was formed on annealing, which is characterized to be a side-on bonded ozonide complex with a planar C(2v) structure. The BeOBe(η(2)-O(3)) complex isomerized to the BeOBe(η(1)-O(3)) isomer under visible light excitation, which is an end-on bonded ozonide complex with planar C(s) symmetry. These two isomers are interconvertible; that is, visible light induces the conversion of the side-on bonded complex to the end-on bonded isomer, and vice versa on annealing. In addition, evidence is also presented for the linear BeOBeOBe cluster.  相似文献   

7.
The reaction of titanium monoxide molecules and O2 was studied by using matrix isolation infrared spectroscopy as well as theoretical calculations. The titanium monoxide molecule reacts with O2 to form TiO 3 spontaneously on annealing. The TiO3 molecule is characterized to be a side-on bonded peroxo titanium monoxide complex, (eta(2)-O2)TiO, which has a nonplanar Cs symmetry with a 1A' ground state. The (eta(2)-O2)TiO complex can further coordinate another dioxygen to give TiO 5, a disuperoxo titanium monoxide complex, (eta(2)-O2)(2)TiO, which possesses a 3A' ground state and a nonplanar Cs geometry.  相似文献   

8.
The boron atoms react with carbon monoxide and dinitrogen forming the end-on bonded NNBCO complex in solid neon or in nitrogen matrices. The NNBCO complex rearranges to the (η2-N2)BCO isomer with a more activated side-on bonded dinitrogen ligand upon visible light excitation. (η2-N2)BCO and its weakly CO-coordinated complexes further isomerize to the NBNCO and B(NCO)2 molecules with N−N bond being completely cleaved under UV light irradiation. The geometries, energies and vibrational spectra of the molecules are calculated with quantum chemical methods and the electronic structures are analyzed with charge- and energy-partitioning methods.  相似文献   

9.
The reactions of titanium oxide molecules with dinitrogen have been studied by matrix isolation infrared spectroscopy. The titanium monoxide molecule reacts with dinitrogen to form the TiO(N(2))(x) (x = 1-4) complexes spontaneously on annealing in solid neon. The TiO(η(1)-NN) complex is end-on bonded and was predicted to have a (3)A' ground state arising from the (3)Δ ground state of TiO. Argon doping experiments indicate that TiO(η(1)-NN) is able to form complexes with one or more argon atoms. Argon atom coordination induces a large red-shift of the N-N stretching frequency. The TiO(η(2)-N(2))(2) complex was characterized to have C(2v) symmetry, in which both the N(2) ligands are side-on bonded to the titanium metal center. The tridinitrogen complex TiO(η(1)-NN)(3) most likely has C(3v) symmetry with three end-on bonded N(2) ligands. The TiO(η(1)-NN)(4) complex was determined to have a C(4v) structure with four equivalent end-on bonded N(2) ligands. In addition, evidence is also presented for the formation of the TiO(2)(η(1)-NN)(x) (x = 1-4) complexes, which were predicted to be end-on bonded.  相似文献   

10.
Laser-evaporated chromium atoms are shown to insert into dioxygen to form CrO 2 in solid argon. Annealing allows diffusion and reactions to form (eta (2)-O 2) 2CrO 2, which is characterized as [(O 2 (-)) 2(CrO 2) (2+)], a side-on bonded disuperoxo-chromium dioxide complex. The (eta (2)-O 2) 2CrO 2 complex further reacts with xenon atom doped in solid argon to give (eta (1)-OO)(eta (2)-O 2)CrO 2(Xe), which can be regarded as an O 2 molecule weakly interacting with [(O 2) (2-)(CrO 2) (2+)Xe], a side-on bonded peroxo-chromium dioxide-xenon complex. The results indicate surprisingly that xenon atom induces a disproportionation reaction from superoxo to peroxo and dioxygen complex.  相似文献   

11.
Spectroscopic methods combined with density functional calculations were used to study the disulfide-Cu(II) bonding interactions in the side-on micro -eta(2):eta(2)-bridged Cu(2)(S(2)) complex, [[Cu(II)[HB(3,5-Pr(i)(2)pz)(3)]](2)(S(2))], and the end-on trans- micro -1,2-bridged Cu(2)(S(2)) complex, [[Cu(II)(TMPA)](2)(S(2))](2+), in correlation to their peroxide structural analogues. Resonance Raman shows weaker S-S bonds and stronger Cu-S bonds in the disulfide complexes relative to the O-O and Cu-O bonds in the peroxide analogues. The weaker S-S bonds come from the more limited interaction between the S 3p orbitals relative to that of the O 2s/p hybrid orbitals. The stronger Cu-S bonds result from the more covalent Cu-disulfide interactions relative to the Cu-peroxide interactions. This is consistent with the higher energy of the disulfide valence level relative to that of the peroxide. The ground states of the side-on Cu(2)(S(2))/Cu(2)(O(2)) complexes are more covalent than those of the end-on Cu(2)(S(2))/Cu(2)(O(2)) complexes. This derives from the larger sigma-donor interactions in the side-on micro -eta(2):eta(2) structure, which has four Cu-disulfide/peroxide bonds, relative to the end-on trans- micro -1,2 structure, which forms two bonds to the Cu. The larger disulfide/peroxide sigma-donor interactions in the side-on complexes are reflected in their more intense higher energy disulfide/peroxide to Cu charge transfer transitions in the absorption spectra. The large ground-state covalencies of the side-on complexes result in significant nuclear distortions in the ligand-to-metal charge transfer excited states, which give rise to the strong resonance Raman enhancements of the metal-ligand and intraligand vibrations. Particularly, the large covalency of the Cu-disulfide interaction in the side-on Cu(2)(S(2)) complex leads to a different rR enhancement profile, relative to the peroxide analogues, reflecting a S-S bond distortion in the opposite directions in the disulfide/peroxide pi(sigma) to Cu charge transfer excited states. A ligand sigma back-bonding interaction exists only in the side-on complexes, and there is more sigma mixing in the side-on Cu(2)(S(2)) complex than in the side-on Cu(2)(O(2)) complex. This sigma back-bonding is shown to significantly weaken the S-S/O-O bond relative to that of the analogous end-on complex, leading to the low nu(S)(-)(S)/nu(O)(-)(O) vibrational frequencies observed in the resonance Raman spectra of the side-on complexes.  相似文献   

12.
Hydrido scandium hydroxide dinitrogen complexes, (eta2-N2)Sc(H)OH and (eta1-NN)xSc(H)OH (x = 1, 2), have been prepared by the reactions of laser-ablated scandium atoms with H2O/N2 mixtures in solid argon. The end-on bonded (eta1-NN)xSc(H)OH (x = 1, 2) complexes were formed spontaneously on annealing, whereas the side-bonded (eta2-N2)Sc(H)OH complex was generated on broad-band irradiation. These complexes were characterized by infrared absorption spectroscopy as well as density functional theoretical calculations.  相似文献   

13.
Sodium amalgam reduction of the bis(indenyl)zirconium dihalide complexes, (eta5-C9H5-1-iPr-3-Me)2ZrX2 (X = Cl, Br, I), yielded the corresponding end-on dinitrogen complexes, [(eta5-C9H5-1-iPr-3-Me)2Zr(NaX)]2(mu2, eta1, eta1-N2), with inclusion of 1 equiv of salt per zirconocene. The solid state structures of the chloro and iodo congeners establish short Zr N and elongated N N bonds, consistent with modest to strong activation of the coordinated dinitrogen molecule. Exposure of the N2 compounds to 1 atm of dihydrogen resulted in rapid N H bond formation to yield a hydrido zirconocene hydrazido compound concomitant with salt elimination. These studies establish a new structural type of zirconocene dinitrogen complex and demonstrate that side-on coordination of the N2 ligand in the ground state is not a prerequisite for dinitrogen hydrogenation.  相似文献   

14.
The reaction of a mixture of 1 equiv of PhPH(2) and 2 equiv of PhNHSiMe(2)CH(2)Cl with 4 equiv of Bu(n)Li followed by the addition of THF generates the lithiated ligand precursor [NPN]Li(2).(THF)(2) (where [NPN] = PhP(CH(2)SiMe(2)NPh)(2)). The reaction of [NPN]Li(2).(THF)(2) with TaMe(3)Cl(2) produces [NPN]TaMe(3), which reacts under H(2) to yield the diamagnetic dinuclear Ta(IV) tetrahydride ([NPN]Ta)(2)(mu-H)(4). This hydride reacts with N(2) with the loss of H(2) to produce ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)), which was characterized both in solution and in the solid state, and contains strongly activated N(2) bound in the unprecedented side-on end-on dinuclear bonding mode. A density functional theory calculation on the model complex [(H(3)P)(H(2)N)(2)Ta(mu-H)](2)(mu-eta(1):eta(2)-N(2)) provides insight into the molecular orbital interactions involved in the side-on end-on bonding mode of dinitrogen. The reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with propene generates the end-on bound dinitrogen complex ([NPN]Ta(CH(2)CH(2)CH(3)))(2)(mu-eta(1):eta(1)-N(2)), and the reaction of [NPN]Li(2).(THF)(2) with NbCl(3)(DME) generates the end-on bound dinitrogen complex ([NPN]NbCl)(2)(mu-eta(1):eta(1)-N(2)). These two end-on bound dinitrogen complexes provide evidence that the bridging hydride ligands are responsible for the unusual bonding mode of dinitrogen in ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)). The dinitrogen moiety in the side-on end-on mode is amenable to functionalization; the reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with PhCH(2)Br results in C-N bond formation to yield [NPN]Ta(mu-eta(1):eta(2)-N(2)CH(2)Ph)(mu-H)(2)TaBr[NPN]. Nitrogen-15 NMR spectral data are provided for all the tantalum-dinitrogen complexes and derivatives described.  相似文献   

15.
Peroxo intermediates are implicated in the catalytic cycles of iron enzymes involved in dioxygen metabolism. X-ray absorption spectroscopy has been used to gain insight into the iron coordination environments of the low-spin complex [Fe(III)(Me-TPEN)(eta(1)-OOH)](2+)(1) and the high-spin complex [Fe(III)(Me-TPEN)(eta(2)-O(2))](+)(2)(the neutral pentadentate N-donor ligand Me-TPEN =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine) and obtain metrical parameters unavailable from X-ray crystallography. The complexes exhibit relatively large pre-edge peak areas of approximately 15 units, indicative of iron centers with significant distortions from centrosymmetry. These distortions result from the binding of peroxide, either end-on hydroperoxo for 1 (r(Fe-O)= 1.81A) or side-on peroxo for 2 (r(Fe-O)= 1.99 A). The XAS analyses of 1 strongly support a six-coordinate low-spin iron(III) center coordinated to five nitrogen atoms from Me-TPEN and one oxygen atom from an end-on hydroperoxide ligand. However, the XAS analyses of 2 are not conclusive: Me-TPEN can act either as a pentadentate ligand to form a seven-coordinate peroxo complex, which has precedence in the DFT geometry optimization of [Fe(III)(N4Py)(eta(2)-O(2))](+)(the neutral pentadentate N-donor ligand N4Py =N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), or as a tetradentate ligand with a dangling pyridylmethyl arm to form a six-coordinate peroxo complex, which is precedented by the crystal structure of [Fe(2)(III)(Me-TPEN)(2)(Cl)(2)(mu-O)](2+).  相似文献   

16.
Reactions of rhodium atoms with dioxygen molecules in solid argon have been investigated using matrix isolation infrared absorption spectroscopy. The rhodium-dioxygen complexes, Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO), are produced spontaneously on annealing. The Rh(eta2-O2) complex rearranges to the inserted RhO2 molecule under visible light irradiation. Experiments doped with xenon in argon show that the rhodium-dioxygen complexes are coordinated by one or two noble gas atoms in solid noble gas matrixes. Hence, the Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO) molecules trapped in solid noble gas matrixes should be regarded as the Rh(eta2-O2)(Ng)2, Rh(eta2-O2)2(Ng)2, and Rh(eta2-O2)2(eta1-OO)(Ng) (Ng = Ar or Xe) complexes. The product absorptions are identified on the basis of isotopic substitution and density functional theory calculations.  相似文献   

17.
Scandium monoxide-dinitrogen complexes-OSc(N2), OScNN, and OScNN+-have been prepared by the reactions of laser-evaporated scandium monoxide with N2 or scandium atoms with N2O in solid argon. The ground-state scandium monoxide molecule reacted with N2 to form the side-bonded OSc(N2) complex spontaneously on annealing. This complex rearranged to the end-on bonded OScNN complex upon UV irradiation. Both the OSc(N2) and OScNN complexes in solid argon can be assigned to have 2A' ' electronic ground state with Cs symmetry arising from the 2Delta first excited-state ScO. The neutral complexes can also be photoionized to the OScNN+ cation complex upon UV irradiation.  相似文献   

18.
The rich chemistry of substituted bis(cyclopentadienyl)zirconium and hafnium complexes bearing side-on coordinated dinitrogen ligands is highlighted in this Perspective. Our studies in this area were initially motivated by the desire to understand side-on vs. end-on dinitrogen coordination in bimetallic zirconocene and hafnocene N2 compounds. In the cases where eta2,eta2-dinitrogen compounds were isolated, both structural and computational data have established significant imido character in the metal-nitrogen bonds. This additional bonding interaction, which is diminished in end-on complexes bearing both terminal and bridging N2 ligands, facilitates dinitrogen functionalization by non-polar reagents including dihydrogen, carbon-hydrogen bonds and weak Br?nsted acids such as water and ethanol. In hafnocene chemistry, where unwanted side-on, end-on isomerization is suppressed, cycloaddition of phenylisocyanate to coordinated N2 has also been accomplished. For N-H bond forming reactions involving H2, kinetic measurements, in addition to isotopic labelling and computational studies, are consistent with dinitrogen functionalization by 1,2-addition involving a highly ordered, four-centred transition structure.  相似文献   

19.
The relative energies of side-on versus end-on binding of molecular oxygen to a supported Cu(I) species, and the singlet versus triplet nature of the ground electronic state, are sensitive to the nature of the supporting ligands and, in particular, depend upon their geometric arrangement relative to the O2 binding site. Highly correlated ab initio and density functional theory electronic structure calculations demonstrate that optimal overlap (and oxidative charge transfer) occurs for the side-on geometry, and this is promoted by ligands that raise the energy, thereby enhancing resonance, of the filled Cu dxz orbital that hybridizes with the in-plane pi* orbital of O2. Conversely, ligands that raise the energy of the filled Cu dz2 orbital foster a preference for end-on binding as this is the only mode that permits good overlap with the in-plane O2 pi*. Because the overlap of Cu dz2 with O2 pi* is reduced as compared to the overlap of Cu dxz with the same O2 orbital, the resonance is also reduced, leading to generally more stable triplet states relative to singlets in the end-on geometry as compared to the side-on geometry, where singlet ground states become more easily accessible once ligands are stronger donors. Biradical Cu(II)-O2 superoxide character in the electronic structure of the supported complexes leads to significant challenges for accurate quantum chemical calculations that are best addressed by exploiting the spin-purified M06L local density functional, single-reference completely renormalized coupled-cluster theory, or multireference second-order perturbation theory, all of which provide predictions that are qualitatively and quantitatively consistent with one another.  相似文献   

20.
Mononuclear iron(III) species with end-on and side-on peroxide have been proposed or identified in the catalytic cycles of the antitumor drug bleomycin and a variety of enzymes, such as cytochrome P450 and Rieske dioxygenases. Only recently have biomimetic analogues of such reactive species been generated and characterized at low temperatures. We report the synthesis and characterization of a series of iron(II) complexes with pentadentate N5 ligands that react with H(2)O(2) to generate transient low-spin Fe(III)-OOH intermediates. These intermediates have low-spin iron(III) centers exhibiting hydroperoxo-to-iron(III) charge-transfer bands in the 500-600-nm region. Their resonance Raman frequencies, nu(O)(-)(O), near 800 cm(-)(1) are significantly lower than those observed for high-spin counterparts. The hydroperoxo-to-iron(III) charge-transfer transition blue-shifts and the nu(O)(-)(O) of the Fe-OOH unit decreases as the N5 ligand becomes more electron donating. Thus, increasing electron density at the low-spin Fe(III) center weakens the O-O bond, in accord with conclusions drawn from published DFT calculations. The parent [(N4Py)Fe(III)(eta(1)-OOH)](2+) (1a) ion in this series (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) can be converted to its conjugate base, which is demonstrated to be a high-spin iron(III) complex with a side-on peroxo ligand, [(N4Py)Fe(III)(eta(2)-O(2))](+) (1b). A detailed analysis of 1a and 1b by EPR and M?ssbauer spectroscopy provides insights into their electronic properties. The orientation of the observed (57)Fe A-tensor of 1a can be explained with the frequently employed Griffith model provided the rhombic component of the ligand field, determined by the disposition of the hydroperoxo ligand, is 45 degrees rotated relative to the octahedral field. EXAFS studies of 1a and 1b reveal the first metrical details of the iron-peroxo units in this family of complexes: [(N4Py)Fe(III)(eta(1)-OOH)](2+) has an Fe-O bond of 1.76 A, while [(N4Py)Fe(III)(eta(2)-O(2))](+) has two Fe-O bonds of 1.93 A, values which are in very good agreement with results obtained from DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号