首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid and highly sensitive spectrofluorimetric method was developed for determination of ziprasidone hydrochloride (ZPS) in capsules. The method is based on measuring the native fluorescence of ZPS in acetate buffer of pH 4.5 at 398 nm after excitation at 315 nm. The fluorescence-concentration plot was rectilinear over the range of 0.05–0.80 μg mL−1 with a lower detection limit (LOD) of 6.0 ng mL−1 and quantification limit (LOQ) of 20.0 ng mL−1. The method was fully validated and successfully applied to the determination of ZPS in its capsules with average percentage recovery of 99.7 ± 1.4. The method was extended to stability study of ZPS. The drug was exposed to acidic, alkaline, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of the alkaline, acidic and oxidative degradation of the drug. A proposal for the degradation pathways was postulated.  相似文献   

2.
A fluorophotometric method for the determination of hydrogen peroxide (H2O2) using fluorescin was developed. This method was based on the oxidative reaction of fluorescin, a colorless, non-fluorescent lactoid fluorescein, by H2O2 to give highly fluorescein fluorescence emission. In the determination of H2O2, the calibration curve exhibited linearity over the H2O2 concentration range of 1.5–310 ng mL−1 at an emission wavelength of 525 nm with an excitation of 500 nm and with relative standard deviations (n = 6) of 2.51%, 2.48%, and 1.31% for 3.1 ng mL−1, 30.8 ng mL−1, and for 308 ng mL−1 of H2O2, respectively. The detection limit for H2O2 was 1.9 ng mL−1 six blank determinations was performed (ρ = 6). This proposed method was applied to detection of other reactive oxygen species and nitrogen species (ROS/RNS) such as singlet oxygen (1O2), hydroxyl radical (OH), peroxynitrite (ONOO) etc., and it was possible to detect them with a high sensitivity. In addition, this proposed method was applied to the recovery tests of H2O2 in calf serum, human saliva, rain water, and wheat noodles; the results were satisfactory.  相似文献   

3.
A simple, sensitive and accurate method has been developed for spectrofluorimetric determination of cefixime in pure form and pharmaceutical preparations. The method is based on the reaction of cefixime with 2-cyanoacetamide in the presence of 21% ammonia at 100 °C. The fluorescent reaction product showed maximum fluorescence intensity at λ 378 nm after excitation at λ 330 nm. The factors affecting the derivatization reaction were carefully studied and optimized. The fluorescence intensity versus concentration plot was rectilinear over the range of 0.02 to 4 μg mL−1 with correlation coefficient of 0.99036. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 2.95 ng mL−1 and 9.84 ng mL−1, respectively. The proposed method was validated statistically and through recovery studies. The method was successfully applied for the determination of cefixime in pure and dosage form with percent recoveries from 98.117% to 100.38%. The results obtained from the proposed method have been compared with the official HPLC method and good agreement was found between them.  相似文献   

4.
A novel solid substrate-room temperature phosphorimetry (SS-RTP) was developed for determination of bumetanide (BMTN). It was validated by determining selectivity, linearity, accuracy, precision, and signal to noise ratio (S/N) for analysis. And all the experiments presented in this work were based on that BMTN inhibited the formation of [Fe-morin]3+ ([FeR]3+) complex by the reaction between Fe3+ and R, which led to severe quenching of room temperature phosphorescence (RTP) signal. The rate constant of the reaction (k) was 2.44 × 10−4 s−1, the activation energy (E) was 21.39 kJ mol−1. Detection limit of this method (LD, 5.0 ag spot−1, corresponding concentration was 1.2 × 10−14 g mL−1) was evaluated and compared with other methods, indicating better sensitivity for BMTN determination using this technique. And due to the high sensitivity of the method, it has been successfully applied to determine BMTN in human urine samples. The linear range was from 0.040 pg mL−1 to 4.0 pg mL−1, allowing wide determined range of BMTN. Meanwhile, the mechanism of this method was also discussed.  相似文献   

5.
In the paper, a chemiluminescence (CL) system was developed based on the catalytical effect of diperiodatocuprate (III) (DPC) on the 1,10-phenanthroline (phen)/hydrogen peroxide (H2O2) in the presence of cetyltrimethylammonium bromide (CTAB). The effects of experimental conditions were investigated. Meanwhile the increase of CL intensity of the DPC/phen/H2O2/CTAB system is proportional to the concentration of phen in the range of low concentration. The linear range of the calibration curve is 5.0 × 10−9–1.0 × 10−6 mol L−1, and the corresponding detection limit is 1.9 × 10−9 mol L−1. The effects of phenolic compounds (PCs) on the system were investigated. Hydroquinone was used as an example to investigate the application of the CL system to the determination of PCs. The quenched CL intensity is linearly related to the logarithm of concentration of hydroquinone. The linear range of the calibration curve is 2.5 × 10−9–1.0 × 10−5 g mL−1, and the corresponding detection limit is 1.8 × 10−9 g mL−1. This phen and hydroquinone can be synchronously determined. The method was applied to the determination of hydroquinone in water samples and the recoveries were from 92% to 106%.  相似文献   

6.
A new spectrofluorimetric method has been developed and validated for the quantification of ceftriaxone in bulk powder, pharmaceutical formulations and spiked human plasma. The developed method is reproducible, accurate, sensitive and cost effective. In this method, ceftriaxone was converted into a fluorescent compound by reacting with 0.8 M ethyl acetoacetate and 25% formaldehyde in a buffered medium (pH = 4.2) at 90 °C. The excitation and emission wavelengths of the fluorescent reaction product are 316 nm and 388 nm respectively. Optimization of the experimental conditions affecting the condensation reaction were carefully carried out and the optimum experimental conditions were incorporated in the procedure. The developed method has a broad linear range (0.2–20 μg mL−1) with a correlation coefficient of 0.9992. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 1.94 × 10−2 μg mL−1 and 6.47 × 10−2 μg mL−1 respectively. The common excipients and co-administered drugs were investigated for their interferences effect in the assay. The developed method was validated statistically through recovery studies and successfully applied to ceftriaxone determination in bulk powder, pharmaceutical formulations and spiked human plasma samples. The percent recoveries were found to be in the range of 99.04–100.26% for bulk powder, 98.88–99.92% for pharmaceutical formulations and 94.22–98.48% for spiked human plasma. The results were verified by comparing with reference literature HPLC method and were found in good agreement.  相似文献   

7.
In pH 1.8 ∼ 2.8 weak acid medium, polyvinylpyrrolidone (PVP) and Eosin Y reacted to form complex that could result in Eosin Y (EY) fluorescence quenching. The maximum quenching wavelength was at 542 nm. The fluorescence quenching (ΔF) was proportional to the concentration of polyvinylpyrrolidone in a certain range. The linear range, the correlation coefficient and the detection limit were 0.33 ∼ 2.0 μg•mL−1, 0.9994 and 99.6 ng•mL−1, respectively. The influences of the coexistence substances were tested and the results showed that the method had good selectivity. Therefore, a new method based on fluorescence quenching of eosin Y by PVP for the determination of trace PVP was developed. The method was sensitive, simple and rapid, which was applied to the determination of trace PVP in the beer with satisfactory results. The reaction mechanism was also discussed.  相似文献   

8.
It is found that silver nanoparticles (AgNPs) can further enhance the fluorescence intensity of curcumin (CU) - cetyltrimethylammonium bromide (CTAB) – nucleic acids and improve its anti-photobleaching activity. Under optimum conditions, the enhanced fluorescence intensity is proportion to the concentration of nucleic acids in the range of 2.0 × 10−8–1.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 2.0 × 10−8–1.0 × 10−6 g mL−1 for calf thymus DNA (ctDNA), 1.0 × 10−8–1.0 × 10−6 g mL−1 for yeast RNA (yRNA), and their detection limits (S/N = 3) are 8.0 ng mL−1, 10.5 ng mL−1 and 5.8 ng mL−1, respectively. This method is used for determining the concentration of DNA in actual sample with satisfactory results. The interaction mechanism is also studied.  相似文献   

9.
A rapid, simple and highly sensitive second derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixture of cinnarizine (CN) and domperidone (DOM). The method is based upon measurement of the native fluorescence of these drugs at Δλ = 80 nm in aqueous methanol (50% V/V). The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.1 to 1.3 μg mL−1 and 0.1–3.0 μg mL−1 for CN and DOM, respectively with lower detection limits of 0.017 and 5.77 × 10−3 μg mL−1 and quantification limits of 0.058 and 0.02 μg mL−1 for CN and DOM. The proposed method was successfully applied for the determination of the studied compounds in synthetic mixtures and in commercial tablets. The results obtained were in good agreement with those obtained with reference methods. The high sensitivity attained by the synchronous fluorometric method allowed the determination of CN in real and spiked human plasma. The mean % recoveries in case of spiked human plasma (n = 3) were 96.39 ± 1.18 while that in real human plasma (n = 3) was 104.67 ± 4.16.  相似文献   

10.
Strong chemiluminescence (CL) emission was observed when sodium new houttuyfonate (SNH) was mixed with Tween 80 in sulfuric acid medium in the presence of rhodamine B. Base on this phenomenon, a sensitive flow injection-CL method for the determination of SNH was developed. Under the optimum conditions, the CL emission is linearly with SNH concentration in the range 8.0–4000 ng mL−1, with a detection limit of 2.7 ng mL−1 (3σ). As a preliminary application, the proposed method was successfully applied to the determination of SNH in pharmaceutical preparations. The possible CL mechanism was also discussed in this paper.  相似文献   

11.
A highly sensitive fluorogenic probe for captopril, 4-methylumbelliferyl-2, 4-dinitrobenzenesulfonate (4-MUDNBS), was designed and synthesized. 4-MUDNBS is a nonfluorescent compound and was synthesized via the one-step reaction of 4-methylumbelliferone (4-MU) with 2,4-dinitrobenzenesulfonyl chloride. Upon mixing with captopril in basic solution, the 2,4-dinitrobenzenesulfonyl group of 4-MUDNBS was efficiently removed and highly fluorescent 4-MU was released, hence leading to the dramatic fluorescence increase of the reaction solution. The fluorescence intensity is linear with captopril concentration in the range 3.0–500 ng mL−1 with a detection limit of 2.2 ng mL−1 (3σ). The effect of substituents on the benzenesulfonyl moiety of the probe is discussed, and the presence of electronegative groups is favorable for the thiolate-induced cleavage reaction. The proposed method has been successfully applied to the captopril determination in pharmaceutical preparations.  相似文献   

12.
13.
A novel, simple, sensitive and selective spectrofluorimetric method was developed for the determination of trace amounts of chlorzoxazone and Ibuprofen in pharmaceutical tablets using optical sensor Eu-Tetracycline HCl doped in sol–gel matrix. The chlorzoxazone or Ibuprofen can remarkably enhance the luminescence intensity of Eu-Tetracycline HCl complex doped in a sol–gel matrix in dimethylformamide (DMF) at pH 9.7 and 6.3, respectively, λex = 400 nm. The enhancing of luminescence intensity peak of Eu-Tetracycline HCl complex at 617 nm is proportional to the concentration of chlorzoxazone or Ibuprofen a result that suggested profitable application as a simple optical sensor for chlorzoxazone or Ibuprofen assessment. The dynamic ranges found for the determination of chlorzoxazone and Ibuprofen concentration are 5 × 10−9–1 × 10−4 and 1 × 10−8–7 × 10−5 mol L−1, and the limit of detection (LOD) and quantitation limit of detection (LOQ) are 3.1 × 10−10 , 9.6 × 10−10 and 5.6 × 10−10, 1.7 × 10−9 mol L−1, respectively.  相似文献   

14.
The labelling reagent CdSe@CdS-QDs-Cys (QDs-Cys) with the grain diameter of 4.5 nm was synthesized by modifying CdSe@CdS quantum dots (QDs) with cysteine (Cys). At the same time, QDs-Cys-AbIgE, a phosphorescent quantum dot probe, was developed based on the labelling reaction between -COOH of QDs-Cys and -NH2 of goat anti human IgE antibody (AbIgE). This probe with excellent biocompatibility and high specificity could not only emit strong and stable room temperature phosphorescence (RTP), but also could carry out specific immunoassay (IA) with immunoglobulin E (IgE), causing the RTP of the system to sharply enhance. Thus, a new solid substrate room temperature phosphorescence immunoassay (SSRTPIA) for the determination of IgE was established. The limit of quantification (LOQ) of the method was 0.12 fg spot−1, corresponding concentration was 3.0 × 10−13 g mL−1 and sampling quantity was 0.40 μL spot−1. This highly selective, sensitive and accurate SSRTPIA has been applied to determine IgE in biological samples and diagnose diseases, and the results agreed well with those obtained by enzyme-link immunoassay (ELISA). Meanwhile, the mechanisms of QDs-Cys labelling AbIgE and the determination of IgE by SSRTPIA were also discussed.  相似文献   

15.
Li L  Lu Y  Ding Y  Cheng Y  Xu W  Zhang F 《Journal of fluorescence》2012,22(2):591-596
L-Cysteine capped CdTe nanoparticles (NPs) were synthesized in aqueous medium, and their application as fluorescence probes in the determination of paracetamol was studied. The L-cysteine capped CdTe NPs were characterized by transmission electron microscopy, X-ray diffraction spectrometry, spectrofluorometry, ultraviolet-visible and Fourier transform infrared spectrometry. Based on the distinct fluorescence quenching of CdTe fluorescence probes in the presence of paracetamol, a simple, rapid and specific method for paracetamol determination was presented. Under optimum conditions, the relative fluorescence intensity of CdTe NPs was linearly proportional to paracetamol concentration from 1.0 × 10−8 mol/L to 1.6 × 10−7 mol/L with a detection limit of 4.2 × 10−9 mol/L. The proposed method was applied to detect paracetamol in commercial tablets with satisfactory results.  相似文献   

16.
A sensitive, simple and selective spectrofluorimetric method was developed for the determination of oxamniquine (OXM) in pharmaceutical formulations and biological fluids. The method is based on the reaction between the drug and 1-dimethylaminonaphthalene-5-sulphonyl chloride (dansyl chloride) in presence of 0.5 M sodium carbonate (pH 10) to yield a highly fluorescent derivative that is measured at 445 nm after excitation at 335 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence concentration plot was rectilinear over the range of 0.02–0.2 μg ml−1 with a lower detection limit (LOD) of 0.007 μg ml−1 and limit of quantitation (LOQ) of 0.02 μg ml−1. The proposed method was successfully applied to the analysis of commercial capsules. The results obtained were in good agreement with those obtained using the official spectrophotometric method. Furthermore, the method was applied for the determination of oxamniquine in spiked human plasma, the mean % recovery (n = 4) is 97.77 ± 1.19. A proposal of the reaction pathway was presented.  相似文献   

17.
CdHgTe nanoparticles (NPs) with the emission in the near-infrared regions were prepared in aqueous solution, and were characterized by transmission electron microscopy, X-ray diffraction spectrometry, spectrofluorometry and ultraviolet-visible spectrometry. Based on the fluorescence quenching of CdHgTe NPs in the presence of proteins, a novel method for the determination of proteins with CdHgTe NPs as a near-infrared fluorescence probe was developed. Maximum fluorescence quenching was observed with the excitation and emission wavelengths of 500 and 693 nm, respectively. Under the optimal conditions, the calibration graphs were linear in the range of 0.04 × 10−6–5.6 × 10−6 g ml−1 for lysozyme (Lyz) and 0.06 × 10−6–6.1 × 10−6 g ml−1 for bovine hemoglobin (BHb), respectively. The limits of detection were 13 ng ml−1 for Lyz and 27 ng ml−1 for BHb, respectively. Four synthetic samples were determined and the results were satisfied.  相似文献   

18.
A simple and sensitive spectrofluorimetric method for determination of trace amount of doxycycline hydrochloride (DC) in pharmaceutical tablets and serum samples was developed. In ammonia buffer solution of pH 8.9 the doxycycline hydrochloride can remarkably enhance the luminescence intensity of the Sm3+ ion in Sm3+- DC complex at λex = 400 nm. The produced luminescence intensity of Sm3+- DC complex in DMSO is in proportion to the concentration of DC and used as optical sensor for its determination. The dynamic range for the determination of DC is 1 × 10−8 – 5 × 10−6 mol L−1 and in case of quantum yield calculations is 7 × 10−9 – 5 × 10−6 mol L−1 with detection limit of 6.5 × 10−10 mol L−1. The enhancement mechanism of the luminescence intensity in the Sm3+- DC system has been also discussed. A comparison with other spectrofluorimetric methods for tetracycline derivatives in which Eu3+ ion is used instead of Sm3+ ion is also studied.  相似文献   

19.
A sensitive, simple and selective spectrofluorimetric method was developed for the determination of Lamotrigine (LMT) in pharmaceutical formulations and biological fluids. The method is based on reaction of LMT with o-phthalaldehyde in presence of 2-mercaptoethanol in borate buffer of pH 9.8 to yield a highly fluorescent derivative that is measured at 448 nm after excitation at 337 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence-concentration plot was rectilinear over the range of 0.1–1.0 μg ml−1 with lower limit of detection (LOD) 0.02 μg ml−1 and limit of quantification (LOQ) 0.06 μg ml−1 respectively. The proposed method was successfully applied to the the analysis of commercial tablets. Statistical comparison of the results obtained by the proposed and reference method revealed no significant difference in the performance of the two methods regarding the accuracy and precision respectively. The proposed method was further extended to the in-vitro and in-vivo determination of the drug in spiked and real human plasma. The mean percentage recoveries in spiked and real human plasma (n = 3) were 95.78 ± 1.37 and 90.93 ± 2.34 respectively. Interference arising from co-administered drugs was also studied. A proposal for the reaction pathway with o-phthalaldehyde was postulated.  相似文献   

20.
A highly sensitive flow-injection spectrofluorimetric method is presented for the rapid and simple determination of Hg (II) in environmental and pharmaceutical samples. Murexide (ammonium purpurate) was used as the fluorescence reagent in the carrier stream. An emission peak of murexide, which is decreased linearly by addition of Hg (II), occurs at 435 nm in aqueous solution with excitation at 335 nm. A linear calibration was obtained for 5–200 ng ml−1 Hg (II) with the relative standard deviation 2.5% (n = 5) for a 20 μl injection volume Hg (II). The limit of the detection was 1 ng ml−1 and the sampling rate was 80 h−1. No significant interference was found by the ions commonly found in the most environmental samples. The proposed method was successfully applied for the determination of trace mercury in real samples and the validation of the proposed methodology is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号