首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood and natural fibers are composed of multiple polymeric components. Lignin, one primary component, is typically removed to various degrees during paper-making, but is present on thermomechanically isolated fibers. The effect of the residual lignin on the adsorption of poly(diallyldimethylammonium) chloride (PDDA) onto lignocellulosic fibers was investigated under varying solution conditions (electrolyte concentration and pH). Using nitrogen elemental analysis it was shown for the samples containing the highest concentration of lignin, PDDA adsorption to the fibers was reduced for all solution conditions. Upon extracting the alkali-soluble lignin, the samples showed the greatest amount of PDDA adsorption, achieving ~1.6% (w/w), under neutral solution conditions without the presence of added electrolyte. Furthermore, the influence of polyelectrolyte loading and electrokinetic potential on subsequent multilayer formation of PDDA and montmorillonite clay was quantified. It was revealed that electrokinetic potential of fiber after PDDA adsorption, rather than the amount of adsorbed PDDA layer, controlled the subsequent clay adsorption. Significant mass of PDDA/clay (up to ~75% of starting dry fiber mass for only 4 bi-layers) can be adsorbed onto steam-exploded wood fibers through the multilayer assembly process. This paper provides insight into how non-covalent modification of heterogeneous fibrous substrates offers a novel route for the creation of organic/inorganic fiber materials.  相似文献   

2.
Anatomical and physico-chemical properties of residual natural fibers (sugarcane bagasse, coconut fibers and peanut hulls) were characterized in order to evaluate their potential for use in the production of particleboard. The bulk density was determined by helium pycnometer and the chemical characteristics by using an electronic pH meter (for pH determination) on fibers dissolved in acidic and neutral detergents (to determine the levels of cellulose, hemicellulose and lignin). The anatomical characteristics were established using scanning electron microscopy coupled with an X-ray detector system, as well as energy dispersive X-ray spectroscopy. Results indicated similarities and differences between physico-chemical and anatomical characteristics of the residual lignocellulosic fibers when compared with the Pinus sp. wood commercially employed in particleboard production. Bulk density and pH for residual lignocellulosic fibers and Pinus sp. wood presented analogous values. Similar amounts of cellulose and lignin were identified between waste fibers and Pinus sp. wood. The presence of silica was identified in coconut fiber, peanut hull and sugarcane bagasse waste fibers, and may affect the mechanical characteristics of panels. Coconut and sugarcane bagasse fibers show surface pores with diameters ranging from 1.2 to 2.1 μm, below the 5 μm identified for Pinus sp. wood. Both fibers present pores distributed over their entire surface, whereas peanut hull fibers have no pores on their surface. This characteristic contributes to resin dispersion among particles, reflecting positively on the physical–mechanical properties of the panels. Particleboards produced with residual lignocellulosic fibers present similar physical–mechanical properties to those of Pinus sp. wood panels.  相似文献   

3.
A [poly(acrylic acid)/graphite oxide]n [(PAA/GO)(n)] film with a conductivity of 60 S.cm(-1) was grown layer-by-layer (LbL) using Langmuir-Blodgett self-assembly techniques. GO nanoplatelets were prepared from natural graphite by oxidizing, ball milling, exfoliating, and modifying with cationic surfactant cetyltrimethylammonium bromide (CTAB). The X-ray diffraction pattern reveals that PAA and GO stack orderly LbL and repeatedly in the (PAA/GO)(n) films, and about three carbon molecular layers are superposed on each GO sheet. Fourier transform infrared spectra offer evidence for the interaction between the carboxylic groups on PAA and the CTAB on the surface of the GO nanoplatelets. Electrochemistry measurements show that the conductivity of the (PAA/GO)(n) film depends on the carbon-carbon interlayer height of the GO sheet, and the (PAA/GO)(n) film has a typical positive temperature coefficient effect above the PAA melting temperature. The atomic force microscopy images reveal that CTAB molecules stack in a well-ordered head-to-head structure on both surfaces of the GO nanoplatelets and the GO nanoplatelets are embeded between PAA layers.  相似文献   

4.
Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials.  相似文献   

5.
Multilayers of poly(diallyldimethylammonium chloride) (PDDA) and citrate capped Au nanoparticles (AuNPs) anchored on sodium 3-mercapto-1-propanesulfonate modified gold electrode by electrostatic layer-by-layer assembly (LbL) technique are shown to be an excellent architecture for the direct electrochemical oxidation of As(III) species. The growth of successive layers in the proposed LbL architecture is followed by atomic force microscopy, UV-vis spectroscopy, quartz crystal microbalance with energy dissipation, and electrochemistry. The first bilayer is found to show rather different physico-chemical characteristics as compared to the subsequent bilayers, and this is attributed to the difference in the adsorption environments. The analytical utility of the architecture with five bilayers is exploited for arsenic sensing via the direct electrocatalytic oxidation of As(III), and the detection limit is found to be well below the WHO guidelines of 10ppb. When the non-redox active PDDA is replaced by the redox-active Os(2,2'-bipyridine)(2)Cl-poly(4-vinylpyridine) polyelectrolyte (PVPOs) in the LbL assembly, the performance is found to be inferior, demonstrating that the redox activity of the polyelectrolyte is futile as far as the direct electro-oxidation of As(III) is concerned.  相似文献   

6.
Nitrogen adsorption was used to characterize mesoporous structures in never-dried softwood cellulose fibers. Distinct inflections in desorption isotherms were observed over the relative vapor pressure (P/P0) range of 0.5–0.42 for never-dried cellulose fibers and partially delignified softwood powders. The reduction in N2 adsorption volume was attributed to cavitation of condensed N2 present in mesopores formed via lignin removal from wood cell walls during delignification. The specific surface areas of significantly delignified softwood powders were ~150 m2 g?1, indicating that in wood cell walls 16 individual cellulose microfibrils, each 3–4 nm in width, form one cellulose fibril bundle surrounded with a thin layer of lignin and hemicelluloses. Analysis of N2 adsorption isotherms indicates that mesopores in the softwood cellulose fibers and partially delignified softwood powders had peaks ranging from 4 to 20 nm in diameter.  相似文献   

7.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

8.
Carbon nanomaterials recently gained extensive interests for their good application potential in composite nanomaterials because of their unique physicochemical properties. In this study, graphene oxide (GO)-coated silk fibers were fabricated through HBPAA-induced layer-by-layer (LbL) self-assembly technology. The closely adhered GOs coatings were achieved by circular incubation with solutions of hyperbranched poly (amidoamine) (HBPAA) and GOs, with HBPAA serving as the “molecular glue” that could bind single or mutilayered GOs to the surface of silk fibers. In the experiments, GOs nanosheets were synthesized by a modified Hummers method and were characterized by atomic force microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Our developed technology was able to tightly bind GOs to the silk surface and control their loading capacity. Owing to the positive charges and abundant amino end groups of HBPAA, GOs were found to be completely adsorbed onto silk surface. Therefore, their assembly would be green and controllable. The Fourier transform infrared (FTIR) spectroscopy, XPS, XRD, Thermogravimetric analyses (TGA) confirmed the attachment of HBPAA and GOs. Field mission scanning electron microscopy (FESEM) indicated that GOs closely spread on the surface of silk fibers without any self-folding though excessive stacking were observed in a small part of a silk surface with the increased density of GOs coatings. The developed LbL self-assembly technology may provide a controllable approach to coat GOs on the surface of biological fibers and graphene-based functional materials.  相似文献   

9.
Wood-fiber phenol-formaldehyde-resin (PFR) modified surfaces, obtained from the adsorption of a PFR/water solution, are investigated as a function of the nature and the amount of PFR adsorbed. Surface are measurements are performed by using krypton adsorption at 77 K. Chemical modification is monitored by the electron spectroscopy for chemical analysis (ESCA) technique and the surface energy by the inverse phase gas chromatography (IPGC) method at infinite dilution. The London dispersive componentγ S L of the surface energy shows a relationship to the concentration of carbon and oxgen at the fiber surface.γ S L increases from 27.5 mN·m−1 for the untreated fiber to 42.5 mN·m−1 for the fibers treated with 20% high molecular-weight-grade phenol-formaldehyde. The surface atomic ratio O/C determined using the ESCA technique exhibits a decrease from 44% for untreated to 31% for treated samples. Surface area also decreases from 2.09 m2/g to 1.50 m2/g. The PFR adsorbed by wood fibers is observed as the dispersive component of surface energy starts to increase, as the surface oxygen concentration decreases, and on the surface area of the wood fiber.  相似文献   

10.
A layer‐by‐layer (LbL) thin film composed of poly(ethyleneimine) (PEI) and carboxymethyl cellulose (CMC) was prepared on the surface of a gold (Au) disk electrode and the LbL layer was impregnated with hemin to fabricate amperometric hydrogen peroxide (H2O2) sensors. Hemin can be easily immobilized in the LbL layer by immersing the LbL film‐coated electrode in the hemin solution. The hemin‐modified electrode thus prepared exhibited an amperometric response to H2O2 on the basis of the electrochemical reduction catalyzed by hemin. The output current of the hemin‐modified electrode depended on the concentration of H2O2 over the range of 0.005–1.0 mM. Thus, the LbL film composed of PEI and CMC was found to be an excellent material for the facile preparation of hemin‐based H2O2 sensors.  相似文献   

11.
《Electroanalysis》2006,18(16):1627-1630
The surface of a gold (Au) electrode was coated with layer‐by‐layer (LbL) thin films composed of poly(vinyl sulfate) (PVS) and different type of poly(amine)s including poly(allylamine) (PAH), poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) and redox properties of ferricyanide ion ([Fe(CN)6]3?) on the LbL film‐coated Au electrodes were studied. The LbL film‐coated electrodes exhibited redox response to [Fe(CN)6]3? ion when the outermost surface of the LbL film was covered with the cationic poly(amine)s while virtually no response was observed on the LbL film‐coated electrodes whose outermost surface was covered with PVS due to an electrostatic repulsion between [Fe(CN)6]3? ion and the negatively‐charged PVS layer. The redox properties of [Fe(CN)6]3? ion on the LbL film‐coated electrodes significantly depended on the type of polycationic materials in the LbL film. The LbL film‐coated electrodes which had been immersed in the [Fe(CN)6]3? solution for 15 min exhibited redox response even in a [Fe(CN)6]3? ion‐free buffer solution, suggesting that [Fe(CN)6]3? ion is confined in the films. In the buffer solution, redox peaks were observed between +0.1 and 0.4 V depending on the type of polycations in the film. Thus, [Fe(CN)6]3? ion can be confined in the film and the redox potential is polycation‐dependent.  相似文献   

12.
Redox reactions of ferricyanide ions, [Fe(CN)6]3-, in polysaccharide thin films that were prepared by layer-by-layer (LbL) deposition on the surface of a gold electrode were studied electrochemically by cyclic voltammetry. LbL films composed of alginic acid (AGA) and carboxymethylcellulose (CMC) were successfully prepared using poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) as the cationic counterparts in the electrostatic LbL deposition. The deposition behavior of the PEI-based films significantly depended on the pH of the solutions from which the LbL films were deposited, while the effects of pH were negligibly small for the PDDA-based films due to the pH-independent positive charges on the PDDA chains. The cyclic voltammograms (CVs) of [Fe(CN)6]3- ions on the LbL film-coated electrodes revealed that all the LbL films tested are permeable to [Fe(CN)6]3- ions and that the redox reactions of [Fe(CN)6]3- ions proceed smoothly in the LbL polysaccharide films. It was found that [Fe(CN)6]3- ions are concentrated in the films from the bulk solution, depending on the pH of the medium and on the type of polycations in the film. The PEI-based films concentrated [Fe(CN)6]3- ions more effectively in an acidic solution than in neutral and basic media, while the pH effect was not observed for the PDDA-based films. In addition, we found that the [Fe(CN)6]3- ions are confined in the LbL films due to a strong binding of the ions to the positively charged sites arising from the protonated amino groups in the films. The confined [Fe(CN)6]3- ions exhibited redox reactions in the films, with the redox potentials being shifted to the positive or negative direction in the PEI- or PDDA-based film, respectively, as compared to the redox potential of diffusing [Fe(CN)6]3- ions. Thus, significant effects of the type of polycation in the LbL films on the redox reactions of [Fe(CN)6]3- ions were observed.  相似文献   

13.
Broad-band superhydrophobic antireflective (AR) coatings in near infrared (NIR) region were readily fabricated on silicon or quartz substrates by a layer-by-layer (LbL) assembly technique. First, a porous poly(diallyldimethylammonium chloride) (PDDA)/SiO2 nanoparticle multilayer coating with AR property was prepared by LbL deposition of PDDA and 200 nm SiO2 nanoparticles. PDDA was then alternately assembled with sodium silicate on the PDDA/SiO2 nanoparticle coating to prepare a two-level hierarchical surface. Superhydrophobic AR coating with a water contact angle of 154 degrees was finally obtained after chemical vapor deposition of a layer of fluoroalkylsilane on the hierarchical surface. Quartz substrate with the as-fabricated superhydrophobic AR coating has a maximal transmittance above 98% of incidence light in the NIR region, which is increased by five percent compared with bare quartz substrate. Simultaneously, the superhydrophobic property endows the AR coating with water-repellent ability. Such superhydrophobic AR coatings can effectively avoid the disturbance of water vapor on their AR property and are expected to be applicable under humid environments.  相似文献   

14.
聚电解质PDDA/PSS层层自组装膜的渗透汽化性能   总被引:1,自引:0,他引:1  
采用聚电解质层层自组装(LbL)技术, 在不同盐浓度下制备了聚(二烯丙基二甲基氯化铵)/聚苯乙烯磺酸钠(PDDA/PSS) 多层自组装膜, 并用于渗透汽化性能的研究. 重点考察了组装溶液中NaCl的浓度、组装层数及操作温度对自组装膜的异丙醇脱水性能的影响. 同时, 用扫描电镜观测了不同条件下制备膜的表面形貌. 结果表明, 在高NaCl含量的聚电解质溶液中只需组装几个双层的LbL膜, 即能获得较高的分离因子和较大的通量, 并解释了该LbL膜呈现反“trade-off”现象的原因.  相似文献   

15.
Noncharged pyrene molecules were incorporated into multilayer films by first loading pyrene into poly(acrylic acid) (PAA)-stabilized cetyltrimethylammonium bromide (CTAB) micelles (noted as PAA&(Py@CTAB)) and then layer-by-layer (LbL) assembled with poly(diallyldimethylammonium chloride) (PDDA). The stable incorporation of pyrene into multilayer films was confirmed by quartz crystal microbalance (QCM) measurements and UV-vis absorption spectroscopy. The resultant PAA&(Py@CTAB)/PDDA multilayer films show an exponential growth behavior because of the increased surface roughness with increasing number of film deposition cycles. The present study will open a general and cost-effective avenue for the incorporation of noncharged species, such as organic molecules, nanoparticles, and so forth, into LbL-assembled multilayer films by using polyelectrolyte-stabilized surfactant micelles as carriers.  相似文献   

16.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

17.
The use of ToF-SIMS and XPS in industrial research is demonstrated by a number of applications of surface analysis within Akzo Nobel: surface treatment of carbon fibers, adhesion activation of aramid fibers, weathering and protection of wood, surfactant adsorption on pigments, grafting of polypropylene with acrylic monomers and treatment of a perfluorinated membrane with an amphiphile. The examples illustrate the broad use of these techniques on non-conducting organic and polymeric materials.  相似文献   

18.
A redox polymer (PAHA‐Ru), modified electrode exhibited excellent catalytic activity for the electrochemical oxidation of β‐nicotinamide adenine dinucleotide (NADH). PAHA‐Ru was composed of carboxyl groups and ruthenium complexes containing 1,10‐phenanthroline‐5,6‐dione (phen‐dione). The stability of the PAHA‐Ru film was increased by incorporating poly(diallyldimethylammonium chloride) (PDDA) owing to the formation of a polyelectrolyte complex between the PAHA‐Ru and PDDA. The catalytic efficiency of the oxidation of NADH using the PAHA‐Ru/PDDA‐modified electrode was also greater than that using a PAHA‐Ru‐modified electrode. NAD‐dependent alcohol dehydrogenase (ADH) was entrapped in the PAHA‐Ru/PDDA film on the surface of the glassy carbon electrode. Electrochemical oxidation of ethanol using the ADH‐entrapped electrode was also observed.  相似文献   

19.
Electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) measurements are used to examine the ability of applied potential to drive the ionic self-assembly of poly(diallyldimethylammonium) chloride (PDDA) onto a substrate modified with a monolayer of 3-mercaptopropionic acid (3-MPA). The potential of zero charge (PZC) of the gold electrode modified with a monolayer of 3-MPA was found by differential capacitance measurements to be -0.12 (+/-0.01) V versus Ag-AgCl. Changing the substrate potential to values positive (-0.01 V vs Ag-AgCl) of the PZC induces interfacial conditions that are favorable for the electrostatic deposition of cationic polymers onto the surface of 3-MPA monolayers. This result is also consistent with experimental observations obtained when the 3-MPA-modified substrate is exposed to 0.10 mol L (-1) NaOH solutions. When potentials equal or negative to the PZC are applied to the substrate, no significant accumulation of the PDDA is found by either QCM or EIS measurement. This result is consistent with results obtained when the 3-MPA modified substrate is exposed to 0.10 mol L (-1) HCl solutions where no PDDA adsorption is expected because the monolayer is neutral under these conditions. Changes in the impedance and quartz crystal frequency obtained after potential is applied to the substrate are interpreted in terms of the applied potential creating interfacial conditions that are favorable for the deprotonation of the terminal carboxylic acid groups and the subsequent electrostatic assembly of the polycation onto the negatively charged monolayer.  相似文献   

20.
Theoretical calculations of particle film formation in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to twenty) was simulated for two kinds of particles of equal size. The interaction of two particles of different kind resulted in irreversible and localized adsorption upon contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm particle coverage (2D density) and volume fraction (3D density) were calculated as well as the film thickness as a function of the number of layers. Additionally, the structure of the film was quantitatively characterized in terms of the 2D and 3D pair correlation functions. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. It was also predicted theoretically that the averaged value of particle volume fraction in the uniform film region was rho(LbL)=0.42, which is very close to the maximum packing density equal to 0.382 predicted from the 3D RSA model. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was shown that for low precursor layer density the film thickness increased with the number of layers in a nonlinear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was close to the hexagonal layer thickness equal to 1.73a p. It was concluded that our theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and polyelectrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号