首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A capillary electrophoresis coupling with indirect chemiluminescence detection method for the simultaneous determination of benserazide and levodopa has been developed. The detection interface was improved to simplify the capillary electrophoresis-chemiluminescence (CE-CL) system and the features of this improved interface were illustrated in this paper. The CE-CL conditions for the simultaneous determination of benserazide and levodopa were optimized. Under the optimal conditions, the CL intensity was linear with concentrations of levodopa in the range of 1.0 to 100.0 microg ml(-1), and benserazide in the range of 10.0 to 1,000 microg ml(-1), respectively. The detection limits (S/N=3) in turn were 1.85 microg ml(-1) for BS and 0.12 microg ml(-1) for L-dopa with relative standard deviations of less than 3%. The proposed method has been successfully applied to the determination of benserazide and levodopa in medopar tablets and spiked urine samples, demonstrating the feasibility and reliability of the proposed method.  相似文献   

2.
A multicomponent analysis method based on principal component analysis-artificial neural network model (PC-ANN) is proposed for the simultaneous determination of levodopa (LD) and benserazide hydrochloride (BH). The method is based on the reaction of levodopa and benserazide hydrochloride with silver nitrate as an oxidizing agent in the presence of PVP and formation of silver nanoparticles. The reaction monitored at analytical wavelength 440 nm related to surface plasmon resonance band of silver nanoparticles. Differences in the kinetic behavior of the levodopa and benserazide hydrochloride were exploited by using principal component analysis, an artificial neural network (PC-ANN) to resolve concentration of analytes in their mixture. After reducing the number of kinetic data using principal component analysis, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. The optimized ANN allows the simultaneous determination of analytes in mixtures with relative standard errors of prediction in the region of 4.5 and 6.3 for levodopa and benserazide hydrochloride respectively. The results show that this method is an efficient method for prediction of these analytes.  相似文献   

3.
A novel method for the simultaneous determination of benserazide and levodopa using capillary electrophoresis(CE)- chemiluminescence(CL)has been developed.Under the optimal conditions,the detection limits(S/N=3)were 1.85μg/mL for benserazide and 0.12μg/mL for levodopa.This method was successfully applied to the determination of benserazide and levodopa in Medopar tablet,the results showed that the detected values are in accordance with those by official methods.  相似文献   

4.
An analytical methodology based on differential pulse voltammetry (DPV) on a glassy carbon electrode and the partial least-squares (PLS-1) algorithm for the simultaneous determination of levodopa, carbidopa and benserazide in pharmaceutical formulations was developed and validated. Some sources of bi-linearity deviation for electrochemical data are discussed and analyzed. The multivariate model was developed as a ternary calibration model and it was built and validated with an independent set of drug mixtures in presence of excipients, according with manufacturer specifications. The proposed method was applied to both the assay and the uniformity content of two commercial formulations containing mixtures of levodopa-carbidopa (10:1) and levodopa-benserazide (4:1). The results were satisfactory and statistically comparable to those obtained by applying the reference Pharmacopoeia method based on high performance liquid chromatography. In conclusion, the methodology proposed based on DPV data processed with the PLS-1 algorithm was able to quantify simultaneously levodopa, carbidopa and benserazide in its pharmaceuticals formulations using a ternary calibration model for these drugs in presence of excipients. Furthermore, the model appears to be successful even in the presence of slight potential shifts in the processed data, which have been taken into account by the flexible chemometric PLS-1 approach.  相似文献   

5.
《Analytical letters》2012,45(13):2701-2718
ABSTRACT

A method based on a partial least-squares calibration (PLS) for the simultaneous spectrophotometric determination of levodopa (I) and benserazide (II) in a commercially available pharmaceutical preparation is proposed. The calibration procedure was developped by using laboratory made mixtures of I and II, and optimized by selecting the most suitable wavelength range and spectral mode. The relative standard error of prediction (RSEP %) was 0.5% and 0.9% with a limiting reproducibility (R) of 4 10?6 M and 1.5 10?6 M for levodopa and benserazide, respectively The proposed method is straightforward, expeditious and precise. Its results are consistent with those provided by HPLC for the two analytes.  相似文献   

6.
Coello J  Maspoch S  Villegas N 《Talanta》2000,53(3):627-637
A procedure for the simultaneous kinetic-spectrophotometric determination of levodopa (I) and benserazide (II), from their oxidation reaction with KIO(4) in an acidic medium, is described. Both species instantly oxidize, giving rise to compounds which present maximum values of absorbance close to 400 nm. In the presence of an excess of the oxidizing agent, the levodopa derivative evolves to form the corresponding aminochrome (lambda(m)=480 nm), while the benserazide derivative decomposes to yield colorless compounds. The appearance of new compounds, with absorption bands in the region of 500-700 nm, is additionally seen upon adding the oxidizing agent to a mixture of I and II. These compounds also evolve decomposing and forming colorless products. In spite of the complexity of the system studied, the calibration by bi-linear partial least squares (PLS) as well as by three-way partial least squares (nPLS) permit the quantification of both analytes with a precision on the order of 0.7% for levodopa and of 1.5% for benserazide. nPLS also allows for the qualitative interpretation of the phenomena which occur. The proposed method is applied to the quantification of I and II in the commercial, pharmaceutical preparation Madopar, using high performance liquid chromatography (HPLC) as the analytical reference technique.  相似文献   

7.
Determination of ambroxol in an automated multi-pumping pulsed flow system.   总被引:3,自引:0,他引:3  
A new flow methodology exploiting the multi-pumping approach was developed for the spectrophotometric determination of ambroxol hydrochloride in pharmaceutical preparations. The flow manifold was implemented by using, exclusively, multiple solenoid-actuated micro-pumps, which acted simultaneously as sample insertion, solutions propelling and reagents commutation units. Linear calibration plots were obtained over an ambroxol concentration ranging from 10 to 200 mg l(-1) (r.s.d. < 0.5%, n = 15) and a sampling rate of about 60 samples per hour (flow rate = 1.92 ml min(-1), sample volume = 80 microl).  相似文献   

8.
In this paper, a novel flow-injection chemiluminescence (CL) system for the determination of formaldehyde is described. It is based on a strong enhance effect of formaldehyde on the weak CL emission of the reaction between potassium bromate and rhodamine 6G in a sulfuric acid medium. A possible mechanism for this CL reaction is proposed. A CL calibration graph was linear in the range of 0.8 - 200 microg l(-1) and the detection limit was 0.3 microg l(-1) (3sigma). The relative standard deviation was less than 3% for 10 microg l(-1) formaldehyde (n = 11). The method has been applied to determine formaldehyde in the air samples.  相似文献   

9.
A multi-pumping flow system for the chemiluminometric determination of the hypoglycaemic drug metformin was implemented. The developed methodology was based on the metformin-induced inhibition (metformin acts as a Cu(II) scavenger) of the catalytic effect of Cu(II) ions on the chemiluminescent reaction between luminol and hydrogen peroxide. The flow manifold configuration was based on the utilisation of multiple solenoid-actuated micro-pumps that were simultaneously accountable for sample/reagent introduction and reaction zone formation/propulsion, thus resulting in a fully automated, simple and highly selective multi-pumping flow system. A versatile sample manipulation allowed the establishment of distinct sampling strategies with low reagent consumption. The characteristic pulsed flow ensured an effective sample/reagent mixing leading to a better and faster reaction zone homogenisation and thus improved analytical signals. Linear calibration plots were obtained for metformin hydrochloride concentrations ranging from 5 to 15 mg L–1 with a relative standard deviation lower than 2.0% (n=5). Detection limit was 0.94 mg L–1, and the sampling rate was about 95 determinations per hour. The developed methodology was applied to the analysis of pharmaceutical formulations and the obtained results were in agreement with those furnished by the reference method with relative percentage deviations of lower than 1.5%.  相似文献   

10.
In this paper, a flow-injection chemiluminescence (CL) system is proposed for simultaneous determination of Co(II) and Cr(III) with partial least squares calibration. This method is based on the fact that both Co(II) and Cr(III) catalyze the luminol-H(2)O(2) CL reaction, and that their catalytic activities are significantly different on the same reaction condition. The CL intensity of Co(II) and Cr(III) was measured and recorded at different pH of reaction medium, and the obtained data were processed by the chemometric approach of partial least squares. The experimental calibration set was composed with nine sample solutions using orthogonal calibration design for two component mixtures. The calibration curve was linear over the concentration range of 2 x 10(-7) to 8 x 10(-10) and 2 x 10(-6) to 4 x 10(-9) g/ml for Co(II) and Cr(III), respectively. The proposed method offers the potential advantages of high sensitivity, simplicity and rapidity for Co(II) and Cr(III) determination, and was successfully applied to the simultaneous determination of both analytes in real water sample.  相似文献   

11.
In this paper a continuous-flow chemiluminescence (CL) system with artificial neural network calibration is proposed for simultaneous determination of rifampicin and isoniazid. This method is based on the different kinetic spectra of the analytes in their CL reaction with alkaline N-bromosuccinimide as oxidant. The CL intensity was measured and recorded every second from 1 to 300 s. The data obtained were processed chemometrically by use of an artificial neural network. The experimental calibration set was 20 sample solutions. The relative standard errors of prediction for both analytes were approximately 5%. The proposed method was successfully applied to the simultaneous determination of rifampicin and isoniazid in a combined pharmaceutical formulation.  相似文献   

12.
Differential kinetic analysis can be implemented in a multi-pumping flow system, and this was demonstrated in relation to an improved spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method exploited the influence of Fe(II) and V(IV) on the rate of iodide oxidation by Cr(VI) under acidic conditions; therefore the Jones reductor was needed. The sample was inserted into an acidic KI stream that acted also as carrier stream, and a Cr(VI) solution was added by confluence. Successive measurements were performed during sample passage through the detector, each one related to a different yet reproducible condition for reaction development. Data treatment involved multivariate calibration by the PLS algorithm.The proposed system is very simple and rugged, allowing about 50 samples to be run per hour, meaning 48 mg KI per determination. The first two latent variables carry ca. 94% of the analytical information, pointing out that the intrinsic dimensionality of the data set is two. Results are in agreement with inductively coupled argon plasma-optical emission spectrometry.  相似文献   

13.
A simple screening method was developed for the determination of glyphosate in water samples using a multi-pumping flow system. The proposed method is based on the reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC), in an acid medium where the reaction product can be measured spectrophotometrically at λ(max) = 495 nm. An experimental design methodology was used to optimize the measurement conditions. The proposed method was applied to the determination of glyphosate in water samples in a concentration range from 0.5 to 10 μg mL(-1). The limit of detection and quantification were 0.17 and 0.53 μg mL(-1), respectively. The results obtained (88.5 to 104.5%) in recovery studies for the determination of glyphosate in different water samples indicated good accuracy and no matrix effect for the developed method. Samples were also analyzed by a confirmatory HPLC method, and agreement within the two set of results was found.  相似文献   

14.
流动注射电化学发光测定潘生丁   总被引:5,自引:0,他引:5  
郑行望  章竹君 《分析化学》1999,27(2):145-148
设计了一种应用于流通体系的电解池,以恒电流电解的方法,在线定量电生化学发光反应试剂次溴酸根。其可在碱性介质理米诺而产生强的化学发光。发现潘生丁对该电化学发光有很强的抑制作用。并建立了潘生丁的电化学发光方法。对影响潘生丁测定的实验条件进行了考察和优化。该方法测定潘生丁的一性范围为0.01-2mg/L,检出限为0.004mg/L,相对标准偏差为4.1%。雇学成功地用于片剂潘生丁样品的分析。  相似文献   

15.
A novel alternative for the simultaneous determination of compounds with similar structure is described, using the whole chemiluminescence-time profiles, acquired by the stopped-flow technique, in combination with mathematical treatments of multivariate calibration. The proposed method is based on the chemiluminescent oxidation of morphine and naloxone by their reaction with potassium permanganate in an acidic medium, using formaldehyde as co-factor. The whole chemiluminescence-time profiles, acquired using the stopped-flow technique in a continuous-flow system, allowed the use of the time-resolved chemiluminescence (CL) data in combination with multivariate calibration techniques, as partial least squares (PLS), for the quantitative determination of both opiate narcotics in binary mixtures.In order to achieve overcoat the additivity of the CL profiles and beside to obtain CL profiles for each drug the most separated as possible in the time, the optimum chemical conditions for the CL emission were investigated. The effect of common emission enhancers on the CL emission obtained in the oxidation reaction of these compounds in different acidic media was studied. The parameters selected were sulphuric acid 1.0 mol L−1, permanganate 0.2 mmol L−1 and formaldehyde 0.8 mol L−1. A calibration set of standard samples was designed by combination of a factorial design, with three levels for each factor and a central composite design. Finally, with the aim of validating the chemometric proposed method, a prediction set of binary samples was prepared. Using the multivariate calibration method proposed, the analytes were determined in synthetic samples, obtaining recoveries of 97-109%.  相似文献   

16.
An analytical method for the determination of tiopronin in pharmaceuticals was developed. The method is based on measurements of the chemiluminescence (CL) produced by tiopronin upon reaction with sulfuric acid and potassium permanganate as the oxidant in the presence of formaldehyde as emission enhancer. This allows entire chemiluminescence intensity vs. time profiles to be recorded by using the stopped-flow technique in a continuous-flow system, which, in turn, enables the use of a new parameter (the rate of the light decay reaction) in addition to the maximum emission intensity and total emission area, which are proportional to the analyte concentration. The influence of chemical variables such as the type of acid used and its concentration, emission enhancer, and oxidant concentration on the chemiluminescence signal was examined. The calibration graph was linear from 0.05 to 3.00 mg L?1. The limit of detection as determined according to Clayton ranged from 0.12 to 0.17 mg L?1 and the relative standard deviation (RSD) for the analysis of 10 samples containing an analyte concentration of 1.50 mg L?1 was 1.87%.  相似文献   

17.
雌二醇的流动注射阻抑化学发光法测定   总被引:1,自引:0,他引:1  
基于碱性介质中雌二醇对N-溴代丁二酰亚胺-钙黄绿素化学发光体系的阻抑作用,建立了雌二醇的流动注射化学发光分析新方法,优化了其分析条件,并初步探讨了该化学发光反应的机理。该方法测定雌二醇的线性范围为0.02~0.1、0.1~8.0 mg/L,检出限为0.008 5 mg/L。对0.1 mg/L的雌二醇标准溶液进行11次平行测定,相对标准偏差为1.2%。将该法用于注射液中雌二醇的测定,结果满意。  相似文献   

18.
The chemical derivatization of bilirubin oxidase (BOx) with a fluorescein derivative (FS) yields a chemically modified enzyme (BOx-FS), with excitation and emission maxima at 487 and 520 nm, respectively. During the oxygen oxidation reaction of bilirubins, in the presence of the modified enzyme, the change in the fluorescence of the modified enzyme depends on the concentration and type of bilirubin. This effect can be used for analytical purposes. Firstly, a theoretical-experimental study of the analytical system was carried out. The mechanism responsible for the fluorescence variation was clarified, a mathematical model developed and the variables affecting the fluorescence changes optimized. The concentration ranges in which the model can be applied (up to 12 mg bilirubin l(-1)), and the precision of the measurement (about 4%) were established for the three bilirubins. The application of the methodology to the simultaneous determination of direct and total bilirubins were studied by applying multivariate calibration methods to the whole kinetic profiles. A reduced calibration matrix (derived from a 5(3) base matrix) is proposed for calibration and different numerical methods were tested: Principal Components Regression (PCR), Partial Least Squares Regression (PLS) and Artificial Neural Networks (ANN). The simultaneous determination of direct and total bilirubin (average validation errors of about 9 and 10%, respectively) can be carried out from a single run. Furthermore, a semi-quantitative speciation of the three bilirubins (free, conjugated and albumin-bonded bilirubin) may be simultaneously obtained.  相似文献   

19.
A 5.5 μl spiral micro-flow cell, mounted in front of a photomultiplier, is made from Teflon capillary (75 cm×100 μm ID) with two inlets for the CL reagent and carrier buffer and a waste outlet. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. Using a flow rate of 25 μl/min for a 0.4 mM luminol-8 μM hemin solution (pH 11.6) and 50 μl/min of carrier buffer (pH 11.6), the slight exponential calibration curve for the flow injection–chemiluminescence (FI–CL) determination of H2O2 is 2.5–10 μM and the detection limit is 1.5 μM. The detection limit achieved by using a spiral flow cell is 24 times lower than that obtained from a conventional FI system with a low dead volume tee mixer and a 12 μl flow cell in a HPLC fluorometer with the source lamp off. This luminol CL detection method is successfully applied to the enzymatic determination of -lactate by FI. The lactate sample is mixed with polyethylene glycol (PEG)-stabilized lactate oxidase (LO) enzyme and then injected into the buffered (pH 7.5) carrier stream for CL detection of the H2O2 product. Using the optimal conditions of reaction temperature set to 37.5 °C and flow rates of 45 μl/min for the CL reagent and 60 μl/min for the carrier buffer, the calibration range for lactate is 5–50 μM and the detection limit is 2.9 μM. This method is applied to the determination of -lactate in beer.  相似文献   

20.
Based on the electrocatalytic oxidation of levodopa at gold electrode and the reduction of permanganate at platinum electrode, a novel flow injection irreversible biamperometric method is developed for the determination of levodopa under the potential difference of 0 V imposed between two electrodes. In H2SO4 solution, the linear relationships between currents and the concentrations of levodopa are obtained in the range from 0.04 mg/L to 20 mg/L with the detection limit of 0.012 mg/L. The proposed method is applied to the determination of levodopa in pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号