首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential energy surfaces for the reactions of HO(2) with CH(2)ClO(2), CHCl(2)O(2), and CCl(3)O(2) have been calculated using coupled cluster theory and density functional theory (B3LYP). It is revealed that all the reactions take place on both singlet and triplet surfaces. Potential wells exist in the entrance channels for both surfaces. The reaction mechanism on the triplet surface is simple, including hydrogen abstraction and S(N)2-type displacement. The reaction mechanism on the singlet surface is more complicated. Interestingly, the corresponding transition states prefer to be 4-, 5-, or 7-member-ring structures. For the HO(2) + CH(2)ClO(2) reaction, there are two major product channels, viz., the formation of CH(2)ClOOH + O(2) via hydrogen abstraction on the triplet surface and the formation of CHClO + OH + HO(2) via a 5-member-ring transition state. Meanwhile, two O(3)-forming channels, namely, CH(2)O + HCl + O(3) and CH(2)ClOH + O(3) might be competitive at elevated temperatures. The HO(2) + CHCl(2)O(2) reaction has a mechanism similar to that of the HO(2) + CH(2)ClO(2) reaction. For the HO(2) + CCl(3)O(2) reaction, the formation of CCl(3)O(2)H + O(2) is the dominant channel. The Cl-substitution effect on the geometries, barriers, and heats of reaction is discussed. In addition, the unimolecular decomposition of the excited ROOH (e.g., CH(2)ClOOH, CHCl(2)OOH, and CCl(3)OOH) molecules has been investigated. The implication of the present mechanisms in atmospheric chemistry is discussed in comparison with the experimental measurements.  相似文献   

2.
张冬菊  刘成卜 《化学学报》2001,59(9):1406-1412
用量子化学方法在B3LYP/6-311++g(3df,3pd)水平上研究了Ni^+与C3H8的反应,获得了[Ni,C3,H8]^+基态(双重态)势能面上CH4还原消除的详细机理。结果表明:该势能面上CH4消除反应经历两个基元步骤:Ni^+首先通过C—C活化过渡态形成插入型中间体,然后分别过不同的H-转移鞍点异构化为产物型中间体,并继而解离生成CH4,这些结果与以前从实验推测的反应机理明显不同。计算表明:对于该势面能上的甲烷消除反应,能量最有利的反应通道是Ni^+C3H8→Ni(C2H4)^++CH4,计算的反应热为127.85kJ/mol,与实验结果(106.13kJ/mol)符合较好。  相似文献   

3.
Surface reactions of CH2I2 on gallium-rich GaAs(100)-(4 x 1), studied by temperature programmed desorption and X-ray photoelectron spectroscopy (XPS), show CH2I2 adsorbs dissociatively at liquid nitrogen temperatures to form surface chemisorbed CH2(ads) and I(ads) species. Controlled hydrogenation of a fraction of the CH2(ads) species in the chemisorbed layer by the background hydrogen radicals results in a surface layer comprising both CH3(ads) and CH2(ads) species. This hydrogenation step initiates a plethora of further surface reactions involving these two species and I(ads). Thermal activation leads to three sequential methylene insertions (CH2(ads)) into the CH3-surface bond to form three higher alkyl (ethyl (C2), propyl (C3), and butyl (C4)) species, which undergo beta-hydride elimination to evolve the respective higher alkene (ethene, propene, and butene). In competition with beta-hydride elimination, reductive elimination of the ethyl and propyl species with I(ads) occurs to liberate the respective alkyl iodide. Beta-hydride elimination in the alkyls, in the temperature range 420-520 K, is the more dominant pathway, and it is also the rate-limiting step for further chain propagation. The evolution of the alkyl iodides represents the only pathway for the removal of surface iodines in this study and is different from previous investigations where gallium and arsenic iodide etch products (GaI(x), AsI(x) (x = 1-3)) formed instead. The desorption of methane and methyl iodide, formed from surface CH3(ads) species at high temperatures by the reaction between surface methylenes and hydrogens eliminated from the surface C2-C4 alkyls, terminates the chain propagation. We discuss the reaction mechanisms by which the observed reaction products form and postulate reasons for the reaction pathways adopted by the surface species.  相似文献   

4.
Ab initio and density functional theory calculations have been carried out to investigate the reaction of hydroxyl radical (OH) and 1,1,1-trichloroethane (CH3CCl3). The potential energy surface has been given according to the relative energies calculated at the MP2/cc-pVTZ level after the spin projection (PMP2). Five reaction channels were identified and the intramolecular hydrogen bonding was observed in some transition state structures. The barrier heights and reaction enthalpies calculated for all possible channels show that the hydrogen abstraction channel is predominant kinetically and thermodynamically. The contribution from other channels was predicted to be minor.  相似文献   

5.
在B3LYP/6-311+ +G(2d,2p)水平上,优化得到硝基甲烷CH3NO2的10种异构体和23个异构化反应过渡态,并用G2MP2方法进行了单点能计算.根据计算得到的G2MP2相对能量,探讨了CH3NO2势能面上异构化反应的微观机理.研究表明,反应初始阶段的CH3NO2异构化过程具有较高的能垒,其中CH3NO2的两个主要异构化反应通道,即CH3NO2→CH3ONO和CH3NO2→CH2N(O)OH的活化能分别为270.3和267.8 kJ/mol,均高于CH3NO2的C-N键离解能.因而,从动力学角度考虑, CH3NO2的异构化反应较为不利.  相似文献   

6.
The gas-phase hydrogen abstraction reactions of CH(3)O(2) and HO(2) with HO(2) in the presence and absence of a single water molecule have been studied at the CCSD(T)/6-311++G(3d,2p)//B3LYP/6-311G(2d,2p) level of theory. The calculated results show that the process for O(3) formation is much faster than that for (1)O(2) and (3)O(2) formation in the water-catalyzed CH(3)O(2) + HO(2) reaction. This is different from the results for the non-catalytic reaction of CH(3)O(2) + HO(2), in which almost only the process for (3)O(2) formation takes place. Unlike CH(3)O(2) + HO(2) reaction in which the preferred process is different in the catalytic and non-catalytic conditions, the channel for (3)O(2) formation is the dominant in both catalytic and non-catalytic HO(2) + HO(2) reactions. Furthermore, the calculated total CVT/SCT rate constants for water-catalyzed and non-catalytic title reactions show that the water molecule doesn't contribute to the rate of CH(3)O(2) + HO(2) reaction though the channel for O(3) formation in this water-catalyzed reaction is more kinetically favorable than its non-catalytic process. Meanwhile, the water molecule plays an important positive role in increasing the rate of HO(2) + HO(2) reaction. These results are in good agreement with available experiments.  相似文献   

7.
The adsorption of oxygen and d2-propane (CH3CD2CH3) on a series of alkaline-earth-exchanged Y zeolite at room temperature was studied with in situ infrared spectroscopy. Surprisingly at room temperature, oxygen adsorption led to the formation of supercage M2+(O2) species. Further, at low propane coverage, propane was found to adsorb linearly on Mg2+ cations, but a ring-adsorption structure was observed for propane adsorbing on Ca2+, Sr2+, and Ba2+ cations. It is demonstrated that O2 and propane can simultaneously attach to one active center (M2+) to form a M2+(O2)(C3H8) species, which is proposed to be the precursor in thermal propane selective oxidation. Selectivity to acetone in the propane oxidation reaction decreases with increasing temperature and cation size due to the formation of 2-propanol and carboxylate ions. An extended reaction scheme for the selective oxidation of propane over alkaline earth exchanged Y zeolites is proposed.  相似文献   

8.
The hydrogen abstraction reactions of CH3CHFCH3 and CH3CH2CH2F with the OH radicals have been studied theoretically by a dual-level direct dynamics method. The geometries and frequencies of all the stationary points are optimized by means of the DFT calculation. There are complexes at the reactant side or exit route, indicating these reactions may proceed via indirect mechanisms. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the MC-QCISD/3 method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range 200-2000 K. The canculated CVT/SCT rate constants are consistent with available experimental data. The results show that both the variation effect and the SCT contribution play an important role in the calculation of the rate constants. For reactions CH3CHFCH3 and CH3CH2CH2F with OH radicals, the channels of H-abstraction from -CHF- and -CH2- groups are the major reaction channels, respectively, at lower temperature. Furthermore, to further reveal the thermodynamics properties, the enthalpies of formation of reactants CH3CHFCH3, CH3CH2CH2F, and the product radicals CH3CFCH3, CH3CHFCH2, CH3CH2CHF, CH3CHCH2F, and CH2CH2CH2F are studied using isodesmic reactions.  相似文献   

9.
CH_3SGN与O_2气相反应机理的理论研究   总被引:1,自引:1,他引:0  
在G3(MP2)水平上,通过对CH_3S与O_2rcyi2rvylce dm (PES)上关键驻点的能 量计算,共找到4种中间体,9个过渡态,6种产物通道,并对这些气相反应机理进 行了讨论,同时应用TST-RRKM理论对主要反应的速率进行计算。结果表明:CH_3S 与O_2反应在低温下以生成CH_3SOO为主,并与实验结果吻合;在中高温下以消去和 抽提反应为主,分别生成CH_3 + SO_2和CH_2S + HO_2,其它产物较少。  相似文献   

10.
Ab initio calculations at the level of CBS-QB3 theory have been performed to investigate the potential energy surface for the reaction of benzyl radical with molecular oxygen. The reaction is shown to proceed with an exothermic barrierless addition of O2 to the benzyl radical to form benzylperoxy radical (2). The benzylperoxy radical was found to have three dissociation channels, giving benzaldehyde (4) and OH radical through the four-centered transition states (channel B), giving benzyl hydroperoxide (5) through the six-centered transition states (channel C), and giving O2-adduct (8) through the four-centered transition states (channel D), in addition to the backward reaction forming benzyl radical and O2 (channel E). The master equation analysis suggested that the rate constant for the backward reaction (E) of C6H5CH2OO-->C6H5CH2+O2 was several orders of magnitude higher that those for the product dissociation channels (B-D) for temperatures 300-1500 K and pressures 0.1-10 atm; therefore, it was also suggested that the dissociation of benzylperoxy radicals proceeded with the partial equilibrium between the benzyl+O2 and benzylperoxy radicals. The rate constants for product channels B-D were also calculated, and it was found that the rate constant for each dissociation reaction pathway was higher in the order of channel D>channel C>channel B for all temperature and pressure ranges. The rate constants for the reaction of benzyl+O2 were computed from the equilibrium constant and from the predicted rate constant for the backward reaction (E). Finally, the product branching ratios forming CH2O molecules and OH radicals formed by the reaction of benzyl+O2 were also calculated using the stationary state approximation for each reaction intermediate.  相似文献   

11.
A systematic theoretical study of the reactions of HO2 with RO2 has been carried out. The major concern of the present work is to gain insight into the reaction mechanism and then to explain experimental observations and to predict new product channels for this class of reactions of importance in the atmosphere. In this paper, the reaction mechanisms for two reactions, namely, HO2 + CH3O2 and HO2 + CH2FO2, are reported. Both singlet and triplet potential energy surfaces are investigated. The complexity of the present system makes it impossible to use a single ab initio method to map out all the reaction paths. Various ab initio methods including MP2, CISD, QCISD(T), CCSD(T), CASSCF, and density function theory (B3LYP) have been employed with the basis sets ranging from 6-31G(d) to an extrapolated complete basis set (CBS) limit. It has been established that the CCSD(T)/cc-pVDZ//B3LYP/6-311G(d,p) scheme represents the most feasible method for our systematic study. For the HO2 + CH3O2 reaction, the production of CH3OOH is determined to be the dominant channel. For the HO2 + CH2FO2 reaction, both CH2FOOH and CHFO are major products, whereas the formation of CHFO is dominant in the overall reaction. The computational findings give a fair explanation for the experimental observation of the products.  相似文献   

12.
Reaction dynamics for a microsolvated SN2 reaction OH-(H2O)+CH3Cl have been investigated by means of the direct ab initio molecular dynamics method. The relative center-of-mass collision energies were chosen as 10, 15, and 25 kcal/mol. Three reaction channels were found as products. These are (1) a channel leading to complete dissociation (the products are CH3OH+Cl- +H2O: denoted by channel I), (2) a solvation channel (the products are Cl-(H2O)+CH3OH: channel II), and (3) a complex formation channel (the products are CH3OH...H2O+Cl-: channel III). The branching ratios for the three channels were drastically changed as a function of center-of-mass collision energy. The ratio of complete dissociation channel (channel I) increased with increasing collision energy, whereas that of channel III decreased. The solvation channel (channel II) was minor at all collision energies. The selectivity of the reaction channels and the mechanism are discussed on the basis of the theoretical results.  相似文献   

13.
Rates for the dihydrogen elimination of methane, ethane, and propane with cationic platinum clusters, Pt(n) (+) (1相似文献   

14.
Hahn DK  Klippenstein SJ  Miller JA 《Faraday discussions》2001,(119):79-100; discussion 121-43
The temperature- and pressure-dependent kinetics of the reaction between propargyl and molecular oxygen have been studied with a combination of electronic structure theory, transition state theory, and the time-dependent master equation. The stationary points on the potential energy surface were located with B3LYP density functional theory. Approximate QCISD(T,Full)/6-311++G(3df,2pd) energies were obtained at these stationary points. At low temperatures the reaction is dominated by addition to the CH2 side of the propargyl radical followed by stabilization. However, addition to the CH side, which is followed by one of various possible internal rearrangements, becomes the dominant process at higher temperatures. These internal rearrangements involve a splitting of the O2 bond via the formation of 3-, 4- or 5-membered rings, with the apparent products being CH2CO + HCO. Rearrangement via the 3-membered ring is found to dominate the kinetics. Rearrangement from the CH2 addition product, via a 4-membered ring, would yield H2CO + HCCO, but the barrier to this rearrangement is too high to be kinetically significant. Other possible products require H transfers and, as a result, appear to be kinetically irrelevant. Modest variations in the energetics of a few key stationary points (most notably the entrance barrier heights) yield kinetic results that are in good agreement with the experimental results of Slagle and Gutman (I. R. Slagle and D. Gutman, Proc. Combust. Inst., 1986, 21, 875) and of Atkinson and Hudgens (D. B. Atkinson and J. W. Hudgens, J. Phys. Chem. A, 1999, 103, 4242).  相似文献   

15.
To provide insight on the reaction mechanism of the methyperoxy (CH(3)O(2)?) self-reaction, stationary points on both the spin-singlet and the spin-triplet potential energy surfaces of 2(CH(3)O(2)?) have been searched at the B3LYP/6-311++G(2df,2p) level. The relative energies, enthalpies, and free energies of these stationary points are calculated using CCSD(T)/cc-pVTZ. Our theoretical results indicate that reactions on a spin-triplet potential energy surface are kinetically unfavorable due to high free energy barriers, while they are more complicated on the spin-singlet surface. CH(3)OOCH(3) + O(2)(1) can be produced directly from 2(CH(3)O(2)?), while in other channels, three spin-singlet chain-structure intermediates are first formed and subsequently dissociated to produce different products. Besides the dominant channels producing 2CH(3)O? + O(2) and CH(3)OH + CH(2)O + O(2) as determined before, the channels leading to CH(3)OOOH + CH(2)O and CH(3)O? + CH(2)O + HO(2)? are also energetically favorable in the self-reaction of CH(3)O(2)? especially at low temperature according to our results.  相似文献   

16.
Results of gradient-corrected periodic density functional theory calculations are reported for hydrogen abstraction from methane at O(s)(2-), O(s)(-), O(2)(s)(2-) point defect, and Sr(2+)-doped surface sites on La(2)O(3)(001). The results show that the anionic O(s)(-) species is the most active surface oxygen site. The overall reaction energy to activate methane at an O(s)(-) site to form a surface hydroxyl group and gas-phase (*)CH(3) radical is 8.2 kcal/mol, with an activation barrier of 10.1 kcal/mol. The binding energy of hydrogen at an site O(s)(-) is -102 kcal/mol. An oxygen site with similar activity can be generated by doping strontium into the oxide by a direct Sr(2+)/La(3+) exchange at the surface. The O(-)-like nature of the surface site is reflected in a calculated hydrogen binding energy of -109.7 kcal/mol. Calculations indicate that surface peroxide (O(2(s))(2-)) sites can be generated by adsorption of O(2) at surface oxygen vacancies, as well as by dissociative adsorption of O(2) across the closed-shell oxide surface of La(2)O(3)(001). The overall reaction energy and apparent activation barrier for the latter pathway are calculated to be only 12.1 and 33.0 kcal/mol, respectively. Irrespective of the route to peroxide formation, the O(2)(s)(2-) intermediate is characterized by a bent orientation with respect to the surface and an O-O bond length of 1.47 A; both attributes are consistent with structural features characteristic of classical peroxides. We found surface peroxide sites to be slightly less favorable for H-abstraction from methane than the O(s)(-) species, with DeltaE(rxn)(CH(4)) = 39.3 kcal/mol, E(act) = 47.3 kcal/mol, and DeltaE(ads)(H) = -71.5 kcal/mol. A possible mechanism for oxidative coupling of methane over La(2)O(3)(001) involving surface peroxides as the active oxygen source is suggested.  相似文献   

17.
The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).  相似文献   

18.
采用水热法制备了Co3O4/CeO2(x)[x为钴铈原子摩尔比n(Co):n(Ce)=6:49:1]和Ce1-yCoyO2-δ(y=0.10.4)2个系列复合氧化物, 并表征了材料的物理化学性质, 考察了这些氧化物作为氧载体参与甲烷化学链转化(化学链燃烧和化学链部分氧化)的反应性能. 结果表明, 2类复合氧化物的甲烷反应活性均明显优于单一氧化物CeO2或Co3O4, 但2类氧载体上的甲烷反应产物的选择性具有明显差异. Ce1-yCoyO2-δ氧载体形成了Ce-Co-O固溶体, 储氧能力明显增强, 体相晶格氧迁移速率与甲烷活化速率匹配较好, 甲烷反应产物以CO和H2的合成气为主, 有利于甲烷的化学链部分氧化. Co3O4/CeO2(x)氧载体中CeO2与Co3O4之间的相互作用改善了材料的储氧能力和氧化活性, 其与甲烷反应时主要生成CO2, 有利于甲烷化学链燃烧. 连续性化学链循环实验表明, 2类氧载体均具有较好的再生性能和循环稳定性.  相似文献   

19.
Hybrid density functional calculations have been carried out using cluster models of the H/Si(100)-2 x 1 surface to investigate the mechanistic details of the initial surface reactions occurring in the atomic layer deposition of hafnium and zirconium oxides (HfO2 and ZrO2). Reaction pathways involving the metal precursors ZrCl4, Zr(CH3)4, HfCl4, and Hf(CH3)4 have been examined. Pathways leading to the formation of a Zr-Si or Hf-Si linkage show a significant sensitivity to the identity of the leaving group, with chloride loss reactions being both kinetically and thermodynamically less favorable than reactions leading to the loss of a methyl group. The energetics of the Zr(CH3)4 and Hf(CH3)4 reactions are similar with an overall exothermicity of 0.3-0.4 eV and a classical barrier height of 1.1-1.2 eV. For the reaction between H2O and the H/Si(100)-2 x 1 surface, the activation energy and overall reaction enthalpy are 1.6 and -0.8 eV, respectively. Due to contamination, trace amounts of H2O may be encountered by metal precursors, leading to the formation of minor species that can lead to unanticipated side-reaction pathways. Such gas-phase reactions between the halogenated and alkylated metal precursors and H2O are exothermic with small or no reaction barriers, allowing for the possibility of metal precursor hydroxylation before the H/Si surface is encountered. Of the contaminant surface reaction pathways, the most kinetically favorable corresponds to the surface -OH deposition. Interestingly, for the hydroxylated metal precursors, a unique reaction pathway resulting in the direct formation of Si-O-Zr and Si-O-Hf linkages has been identified and found to be the most thermodynamically stable pathway available, being exothermic by approximately 1.0 eV.  相似文献   

20.
Multireference as well as density functional theories in combination with the surface integrated molecular orbital molecular mechanics were adopted to study the surface reactions of cyanogens on Si(100)-2x1 surface. Three different products were identified as minima in the initial surface reaction. Among these, the [2+2] product is both kinetically easily accessible and thermodynamically the most stable. Therefore, it can be considered as the experimentally found strongly bound surface species. Unlike other conjugated systems, the [4+2] product is less stable than the [2+2] product. Subsequent surface isomerization studies revealed that kinetically favorable channels exist between the initially formed low-temperature species and the high-temperature species, indicating that surface morphology changes gradually as a function of surface temperature. Theses two channels eventually lead to the same final surface products, which is consistent with experiment. Current study shows that the subsequent surface isomerizations are the key reactions to better understand the complex surface structures and their properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号