首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper we study the orthogonal polynomials with respect to a measure which is the sum of a finite positive Borel measure on [0,2π] and a Bernstein–Szegö measure. We prove that the measure sum belongs to the Szegö class and we obtain several properties about the norms of the orthogonal polynomials, as well as, about the coefficients of the expression which relates the new orthogonal polynomials with the Bernstein–Szegö polynomials. When the Bernstein–Szegö measure corresponds to a polynomial of degree one, we give a nice explicit algebraic expression for the new orthogonal polynomials.  相似文献   

2.
We introduce two explicit examples of polynomials orthogonal on the unit circle. Moments and the reflection coefficients are expressed in terms of the Jacobi elliptic functions. We find explicit expression for these polynomials in terms of elliptic hypergeometric functions. We show that the obtained polynomials are orthogonal on the unit circle with respect to a dense point measure. We also construct corresponding explicit systems of polynomials orthogonal on the interval of the real axis with respect to a dense point measure. They can be considered as an elliptic generalization of the Askey-Wilson polynomials of a special type.   相似文献   

3.
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.  相似文献   

4.
Littlewood polynomials are polynomials with each of their coefficients in \(\{-1,1\}\). A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit circle of the complex plane is given by the Rudin–Shapiro polynomials. It is shown in this paper that the Mahler measure and the maximum modulus of the Rudin–Shapiro polynomials on the unit circle of the complex plane have the same size. It is also shown that the Mahler measure and the maximum norm of the Rudin–Shapiro polynomials have the same size even on not too small subarcs of the unit circle of the complex plane. Not even nontrivial lower bounds for the Mahler measure of the Rudin–Shapiro polynomials have been known before.  相似文献   

5.
Let (P ν) be a sequence of monic polynomials orthogonal on the unit circle with respect to a nonnegative weight function, let (Ωυ) the monic associated polynomials of (P v), and letA andB be self-reciprocal polynomials. We show that the sequence of polynomials (APυλ+BΩυλ)/Aλ, λ stuitably determined, is a sequence of orthogonal polynomials having, up to a multiplicative complex constant, the same recurrence coefficients as theP ν's from a certain index value onward, and determine the orthogonality measure explicity. Conversely, it is also shown that every sequence of orthogonal polynomials on the unit circle having the same recurrence coefficients from a certain index value onward is of the above form. With the help of these results an explicit representation of the associated polynomials of arbitrary order ofP ν and of the corresponding orthogonality measure and Szegö function is obtained. The asymptotic behavior of the associated polynomials is also studied. Finally necessary and suficient conditions are given such that the measure to which the above introduced polynomials are orthogonal is positive.  相似文献   

6.
ABSTRACT

In this contribution, we explore the well-known connection between Hurwitz and orthogonal polynomials. Namely, given a Hurwitz polynomial, it is shown that it can be decomposed into two parts: a polynomial that is orthogonal with respect to some positive measure supported in the positive real axis and its corresponding second-kind polynomial. Conversely, given a sequence of orthogonal polynomials with respect to a positive measure supported in the positive real axis, a sequence of Hurwitz polynomials can be constructed. Based on that connection, we construct sequences of Hurwitz polynomials that satisfy a recurrence relation, in a similar way as the orthogonal polynomials do. Even more, we present a way to construct families of Hurwitz polynomials using two sequences of parameters and a recurrence relation that constitutes an analogue of Favard's theorem in the theory of orthogonal polynomials.  相似文献   

7.
For a birth and death chain on the nonnegative integers, integral representations for first return probabilities are derived. While the integral representations for ordinary transition probabilities given by Karlin and McGregor (1959) involve a system of random walk polynomials and the corresponding measure of orthogonality, the formulas for the first return probabilities are based on the corresponding systems of associated orthogonal polynomials. Moreover, while the moments of the measure corresponding to the random walk polynomials give the ordinary return probabilities to the origin, the moments of the measure corresponding to the associated polynomials give the first return probabilities to the origin.

As a by-product we obtain a new characterization in terms of canonical moments for the measure of orthogonality corresponding to the first associated orthogonal polynomials. The results are illustrated by several examples.

  相似文献   


8.
Necessary and sufficient conditions for the solvability of the polynomial operator interpolation problem in an arbitrary vector space are obtained (for the existence of a Hermite-type operator polynomial, conditions are obtained in a Hilbert space). Interpolational operator formulas describing the whole set of interpolants in these spaces as well as a subset of those polynomials preserving operator polynomials of the corresponding degree are constructed. In the metric of a measure space of operators, an accuracy estimate is obtained and a theorem on the convergence of interpolational operator processes is proved for polynomial operators. Applications of the operator interpolation to the solution of some problems are described. Bibliography: 134 titles. This paper is a continuation of the work published inObchyslyuval'na ta Prykladna Maternatyka, No. 78 (1994). The numeration of chapters, assertions, and formulas is continued. Translated fromObchyslyuval'na ta Prykladna Matematyka, No. 79, 1995, pp 10–116.  相似文献   

9.
利用数论理论证明了纽结的Jones多项式仅有可能的有理根是O,而链环的Jones多项式仅有可能的有理根是0和-1.给出了作为Jones多项式根的所有可能单位根,以及所有可能的具有平凡Mahler测度的Jones多项式.最后指出了交叉数不超过11的纽结中,只有4_1,8_9,9_(42),K11n19的Jones多项式具有平凡的Mahler测度,从而回答了林晓松提出的关于Mahler测度的一个问题.  相似文献   

10.
Mahler defined the measure of a polynomial in several variables to be the geometric mean of the modulus of the polynomial averaged over the torus. The classical theorem of Kronecker which characterizes monic polynomials with integer coefficients all of whose roots are inside the unit disk can be regarded as characterizing those polynomials of one variable whose measure is exactly 1. Here this result is generalized to polynomials in several variables. The method employed also gives easy generalizations of recent results of Schinzel and Dobrowolski on Lehmer's problem.  相似文献   

11.
For a class of polynomial quantum Hamiltonians used in models of combination scattering in quantum optics, we obtain the asymptotic behavior of the spectrum for large occupation numbers in the secondary quantization representation. Hamiltonians of this class can be diagonalized using a special system of polynomials determined by recurrence relations with coefficients depending on a parameter (occupation number). For this system of polynomials, we determine the asymptotic behavior a discrete measure with respect to which they are orthogonal. The obtained limit measures are interpreted as equilibrium measures in extremum problems for a logarithmic potential in an external field and with constraints on the measure. We illustrate the general case with an exactly solvable example where the Hamiltonian can be diagonalized by the canonical Bogoliubov transformation and the special orthogonal polynomials degenerate into the Krawtchouk classical discrete polynomials.  相似文献   

12.
Classical interpolatory or Gaussian quadrature formulas are exact on sets of polynomials. The Szegő quadrature formulas are the analogs for quadrature on the complex unit circle. Here the formulas are exact on sets of Laurent polynomials. In this paper we consider generalizations of these ideas, where the (Laurent) polynomials are replaced by rational functions that have prescribed poles. These quadrature formulas are closely related to certain multipoint rational approximants of Cauchy or Riesz–Herglotz transforms of a (positive or general complex) measure. We consider the construction and properties of these approximants and the corresponding quadrature formulas as well as the convergence and rate of convergence.  相似文献   

13.
Summary. Numerical methods are considered for generating polynomials orthogonal with respect to an inner product of Sobolev type, i.e., one that involves derivatives up to some given order, each having its own (positive) measure associated with it. The principal objective is to compute the coefficients in the increasing-order recurrence relation that these polynomials satisfy by virtue of them forming a sequence of monic polynomials with degrees increasing by 1 from one member to the next. As a by-product of this computation, one gains access to the zeros of these polynomials via eigenvalues of an upper Hessenberg matrix formed by the coefficients generated. Two methods are developed: One is based on the modified moments of the constitutive measures and generalizes what for ordinary orthogonal polynomials is known as "modified Chebyshev algorithm". The other - a generalization of "Stieltjes's procedure" - expresses the desired coefficients in terms of a Sobolev inner product involving the orthogonal polynomials in question, whereby the inner product is evaluated by numerical quadrature and the polynomials involved are computed by means of the recurrence relation already generated up to that point. The numerical characteristics of these methods are illustrated in the case of Sobolev orthogonal polynomials of old as well as new types. Based on extensive numerical experimentation, a number of conjectures are formulated with regard to the location and interlacing properties of the respective zeros. Received July 13, 1994 / Revised version received September 26, 1994  相似文献   

14.
In this paper we investigate a set of orthogonal polynomials. We relate the polynomials to the Biconfluent Heun equation and present an explicit expression for the polynomials in terms of the classical Hermite polynomials. The orthogonality with a varying measure and the recurrence relation are also presented.  相似文献   

15.
We consider polynomials orthagonal with respect to a measure μ with an absolutely continuous component and a finite discrete part. We prove that subject to certatin integrability conditions, the polynomials satisfy a second order differential equation. The zeroes of such polynomials determine the equilibrium position of movable n unit charges in an external field determined by the measure μ. We also evaluate the discriminant of such orthagonal polynomials and use it to compute the total energy of the system at equilibrium in terms of the recursion coefficients of the orthonormal polynomials. We also investigate several explicit models, the Koornwinder polynomials, the Ginzburg-Landau potential and the generalized Jacobi weights.  相似文献   

16.
In this paper we study sequences of vector orthogonal polynomials. The vector orthogonality presented here provides a reinterpretation of what is known in the literature as matrix orthogonality. These systems of orthogonal polynomials satisfy three-term recurrence relations with matrix coefficients that do not obey to any type of symmetry. In this sense the vectorial reinterpretation allows us to study a non-symmetric case of the matrix orthogonality. We also prove that our systems of polynomials are indeed orthonormal with respect to a complex measure of orthogonality. Approximation problems of Hermite-Padé type are also discussed. Finally, a Markov’s type theorem is presented.  相似文献   

17.
Let be a measure in ? d obtained from adding a set of mass points to another measure . Orthogonal polynomials in several variables associated with can be explicitly expressed in terms of orthogonal polynomials associated with , so are the reproducing kernels associated with these polynomials. The explicit formulas that are obtained are further specialized in the case of Jacobi measure on the simplex, with mass points added on the vertices, which are then used to study the asymptotics kernel functions for .  相似文献   

18.
The asymptotic contracted measure of zeros of a large class of orthogonal polynomials is explicitly given in the form of a Lauricella function. The polynomials are defined by means of a three-term recurrence relation whose coefficients may be unbounded but vary regularly and have a different behaviour for even and odd indices. Subclasses of systems of orthogonal polynomials having their contracted measure of zeros of regular, uniform, Wigner, Weyl, Karamata and hypergeometric types are explicitly identified. Some illustrative examples are given.  相似文献   

19.
Laurent polynomials related to the Hahn-Extonq-Bessel function, which areq-analogues of the Lommel polynomials, have been introduced by Koelink and Swarttouw. The explicit strong moment functional with respect to which the Laurentq-Lommel polynomials are orthogonal is given. The strong moment functional gives rise to two positive definite moment functionals. For the corresponding sets of orthogonal polynomials, the orthogonality measure is determined using the three-term recurrence relation as a starting point. The relation between Chebyshev polynomials of the second kind and the Laurentq-Lommel polynomials and related functions is used to obtain estimates for the latter.  相似文献   

20.
Transformations of the measure of orthogonality for orthogonal polynomials, namely Freud transformations, are considered. Jacobi matrix of the recurrence coefficients of orthogonal polynomials possesses an isospectral deformation under these transformations. Dynamics of the coefficients are described by generalized Toda equations. The classical Toda lattice equations are the simplest special case of dynamics of the coefficients under the Freud transformation of the measure of orthogonality. Also dynamics of Hankel determinants, its minors and other notions corresponding to the orthogonal polynomials are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号