首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new method is presented, allowing the nearly complete oxidization of lithium niobate crystals (LiNbO3), doped with large amounts of iron oxide (0.05–3 wt. % Fe2O3) utilizing annealing at 700 °C in the presence of externally applied electric fields. The treatment results in a concentration ratio of Fe2+ and Fe3+ ions of less than 2×10-3. Strong oxidization of iron in LiNbO3 reduces the photorefractive effect and is therefore of particular interest for nonlinear-optical applications. PACS 42.65.-k; 66.30.Hs; 71.55.-i  相似文献   

2.
Xu X  Zhang L  Shen D  Wu H  Liu Q 《Journal of fluorescence》2008,18(1):193-201
The serum albumin is the most abundant protein in blood plasma and the iron is essential for many cellular processes. However, the interaction between Fe3+ and haem-free serum albumin remains unclear. Here we provide evidence for the fact that haem-free BSA possesses one specific Fe3+-binding site. The binding of Fe3+ to BSA results in a significant quenching of the Trp fluorescence of BSA. The average apparent dissociation constant value for the interaction of Fe3+ and BSA is 3.46 × 10−8 ± 3 × 10−10 M at 37 °C and 3.30 × 10−8 ± 5 × 10−10 M at 25 °C, respectively, as determined by fluorescence titration. Addition of 50 μM Fe2+ to 1 μM BSA results in an obvious hysteretic effect on the fluorescence of BSA. The time-dependent fluorescence quenching of BSA by Fe2+ is not caused by the Fe2+-induced conformational change of BSA, but the oxygen-dependent oxidation of Fe2+ to Fe3+. Fe2+ undergoes an oxygen-dependent oxidation to Fe3+ under aerobic conditions, which is accelerated by the interaction of BSA with Fe3+ and extensively inhibited under anaerobic conditions. The results suggest that BSA may take part in non-transferrin bound iron transfer.  相似文献   

3.
A new anthracene-based fluorescent PET sensor 1 with a tridentate ionophore of amide/β-amino alcohol displays very good selectivity and sensitivity for Fe3+ (K a = 1.6 × 103 M−1) and Hg2+ (K a = 2.1 × 103 M−1) in CH3CN–H2O (3:7, v/v) with detection limit of 1 μM. More fluorescence enhancement was observed when 1 selectively detected Fe3+ or Hg2+ in CH3CN and its detection limit was up to 0.03 μM.  相似文献   

4.
We have measured the three-body decay of a Bose–Einstein condensate of rubidium (87Rb) atoms prepared in the doubly polarized ground state F=m F =2. Our data are taken for a peak atomic density in the condensate varying between 2×1014 cm-3 at initial time and 7×1013 cm-3, 16 s later. Taking into account the influence of the uncondensed atoms on the decay of the condensate, we deduce a rate constant for condensed atoms L=1.8 (±0.5) ×10-29 cm6 s-1. For these densities we did not find a significant contribution of two-body processes such as spin dipole relaxation. Received: 24 November 1998 / Revised version: 26 June 1999 / Published online: 8 September 1999  相似文献   

5.
Laser surface alloying (LSA) with silicon was conducted on austenitic stainless steel 304. Silicon slurry composed of silicon particle of 5 μm in average diameter was made and a uniform layer was supplied on the substrate stainless steel. The surface was melted with beam-oscillated carbon dioxide laser and then LSA layers of 0.4–1.2 mm in thickness were obtained. When an impinged energy density was adjusted to be equal to or lower than 100 W mm−2, LSA layers retained rapidly solidified microstructure with dispersed cracks. In these samples, Fe3Si was detected and the concentration of Si in LSA layer was estimated to be 10.5 wt.% maximum. When the energy density was equal to or greater than 147 W mm−2, cellular grained structure with no crack was formed. No iron silicate was observed and alpha iron content in LSA layers increased. Si concentration within LSA layers was estimated to be 5 to 9 wt.% on average. Crack-free as-deposited samples exhibited no distinct corrosion resistance. The segregation of Si was confirmed along the grain boundaries and inside the grains. The microstructure of these samples changed with solution-annealing and the corrosion resistance was fairly improved with the time period of solution-annealing. Received: 2 September 1999 / Accepted: 6 September 1999 / Published online: 1 March 2000  相似文献   

6.
In this work, a new simple and sensitive flow injection method is developed for the determination of homocysteine with spectrofluorimetric detection technique. This method is based on the oxidation of homocysteine with Tl (III) in acidic media, producing fluorescence reagent, TlCl32-ex = 237 nm, λem = 419 nm). The effects of chemical parameters (including pH of the solutions, the buffer, Tl (III) and potassium chloride concentrations), instrumental parameters (such as flow rate of the solutions, reaction coil length, and sample loop volume) and temperature on the fluorescence intensity as an analytical signal are studied and optimized. In the optimum conditions of the above variables, homocysteine can be determined in the range 4.0 × 10-7–40.0 × 10-6 M with the LDR from 4.0 × 10-7 to 25.0 × 10-6 M. The detection limit (with S/N = 3) is 6.0 × 10-8 M of homocysteine and precision for the injection of 5.0, 10.0 and 15.0 μM of homocysteine are 0.8%, 1.5% and 2.5% (n = 10) respectively. The rate of analysis is 90 samples per hour. The influence of potential interfering substances, including amino acids and carbohydrates is also studied. The proposed method has been successfully used for the determination of homocysteine in the real sample (blood serum and tap water) matrix.  相似文献   

7.
This paper presents the construction, use and characterisation of a laser-induced sealed plasma shutter to clip off the nitrogen pulse tail of a CO2-TEA laser-based lidar dial system. Investigation of the optimum gas filling pressure, temporal profile of the clipped pulse, and the laser threshold power intensities to achieve ionisation growth and breakdown in helium, argon, and nitrogen are also presented. Values of these power density thresholds lie between 3×1011 W cm-2–5×1012 W cm-2, 2×1011 W cm-2–2×1012 W cm-2 and 3×1013 W cm-2–2×1014 W cm-2 for helium, argon, and nitrogen, respectively. The range resolution attainable with the present clipped pulses is 15 m, which is 30 times better than that readily obtained with the nitrogen-tailed pulses. Field measurements of the lidar returns with the clipped pulse from a co-operative target are presented. Received: 27 December 1999 / Revised version: 11 February 2000 / Published online: 27 April 2000  相似文献   

8.
A new effect of the reduction in the rate of phonon scattering by the spatially correlated system of iron ions in HgSe:Fe crystals is detected experimentally and calculated theoretically. The thermoelectric power is measured using HgSe:Fe samples with different iron content in the temperature range 7.5–60 K. It is found that the dependence of the thermoelectric power on iron content exhibits remarkable features at T<10 K: the quantity |α(N Fe )| increases as the iron concentration increases to N Fe =5×1018 cm−3, reaches a maximum at N Fe ≈(1–2)×1019 cm−3, but then monotonically decreases with further increases in N Fe . It is shown that the obseved increase in the thermoelectric power is due to a reduction in the rate of phonon scattering by the spatially correlated system of Fe3+ ions. This new effect is analyzed theoretically, and the theoretical results are compared with the experimental data. Zh. éksp. Teor. Fiz. 114, 191–207 (July 1998)  相似文献   

9.
The flow injection technique is applied to study the binding to DNA of new platinum complexes—E1: ethylenediaminechlorocholylglycinateplatinum(II): [PtCl(CG)(en)], C54H92O12Pt and E2: ethylenediaminebischolylglycinateplatinum(II): [Pt(CG)2(en)], C28H50ClN3O6Pt—derived from cisplatin in which the exchangeable ligands were replaced by bile acids, such that these anticancer drugs have less toxicity and less resistance is developed towards them. Both compounds are fluorescent and their fluorescence is enhanced when they form adducts with DNA, a property that is extremely useful for monitoring the cytotoxic activity and their mechanisms of action. The binding parameters to DNA of E1 [apparent intrinsic binding constant KE1: (11.2 ± 0.4) × 103 M−1 and maximum number of binding sites per nucleotide, n E1: 0.121 ± 2 × 10−3) and E2 (KE2: 9.2 ± 0.7) × 103 M−1 and n E2 0.098 ± 2 × 10−3] were determined following the Scatchard method and the type of binding was studied experimentally through the modifications introduced by each of the compounds into the ethidium bromide–DNA bond.  相似文献   

10.
We report on the first layer growth of a Mn6+-doped material. Large-size BaSO4 substrates of 10×6×4 mm3 were grown from a LiCl solvent by the flux method. Flat surfaces of undoped BaSO4 were then achieved by use of liquid-phase epitaxy (LPE) from a CsCl–KCl–NaCl solvent. Finally, BaSO4:Mn6+ layers were grown by LPE with growth velocities of approximately 3 μm h-1, at temperatures of 550–508 °C. Absorption, luminescence, luminescence-excitation and luminescence-decay measurements confirmed the incorporation of manganese solely in its hexavalent oxidation state. This material possesses potential as a near-infrared tunable laser with a wavelength range larger than Ti:sapphire. Received: 7 January 2002 / Revised version: 30 March 2002 / Published online: 8 August 2002  相似文献   

11.
12.
A novel, simple, sensitive and selective spectrofluorimetric method was developed for the determination of trace amounts of chlorzoxazone and Ibuprofen in pharmaceutical tablets using optical sensor Eu-Tetracycline HCl doped in sol–gel matrix. The chlorzoxazone or Ibuprofen can remarkably enhance the luminescence intensity of Eu-Tetracycline HCl complex doped in a sol–gel matrix in dimethylformamide (DMF) at pH 9.7 and 6.3, respectively, λex = 400 nm. The enhancing of luminescence intensity peak of Eu-Tetracycline HCl complex at 617 nm is proportional to the concentration of chlorzoxazone or Ibuprofen a result that suggested profitable application as a simple optical sensor for chlorzoxazone or Ibuprofen assessment. The dynamic ranges found for the determination of chlorzoxazone and Ibuprofen concentration are 5 × 10−9–1 × 10−4 and 1 × 10−8–7 × 10−5 mol L−1, and the limit of detection (LOD) and quantitation limit of detection (LOQ) are 3.1 × 10−10 , 9.6 × 10−10 and 5.6 × 10−10, 1.7 × 10−9 mol L−1, respectively.  相似文献   

13.
Chemiluminescence (CL) of the reaction system tetracycline–H2O2–Fe(II)/(III)–Eu(III) was used for the determination of tetracycline hydrochloride in water, pharmaceutical preparations, and honey. The CL spectrum registered for this system shows emission bands typical of Eu(III) ions, with a maximum at λ ∼ 600 nm, corresponding to the electronic transitions of 5D07F1 and 5D07F2. A strong chemiluminescence intensity characteristic of europium(III) ions in the system tetracycline–H2O2–Fe(II)/(III)–Eu(III), as contrasted to the emission of the system tetracycline–H2O2–Fe(II)/(III) without Eu(III), proves that the Eu(III) ion plays the role of a chemiluminescence sensitizer, accompanying tetracycline oxidation in the Fenton system (H2O2–Fe(II)/(III)). A linear dependence was observed for the integrated CL light intensity on the tetracycline concentration in the range of 2 × 10−7 to 3 × 10−5 mol l−1 with the detection limit of 5 × 10−8 mol l−1 in aqueous solution.  相似文献   

14.
CdHgTe nanoparticles (NPs) with the emission in the near-infrared regions were prepared in aqueous solution, and were characterized by transmission electron microscopy, X-ray diffraction spectrometry, spectrofluorometry and ultraviolet-visible spectrometry. Based on the fluorescence quenching of CdHgTe NPs in the presence of proteins, a novel method for the determination of proteins with CdHgTe NPs as a near-infrared fluorescence probe was developed. Maximum fluorescence quenching was observed with the excitation and emission wavelengths of 500 and 693 nm, respectively. Under the optimal conditions, the calibration graphs were linear in the range of 0.04 × 10−6–5.6 × 10−6 g ml−1 for lysozyme (Lyz) and 0.06 × 10−6–6.1 × 10−6 g ml−1 for bovine hemoglobin (BHb), respectively. The limits of detection were 13 ng ml−1 for Lyz and 27 ng ml−1 for BHb, respectively. Four synthetic samples were determined and the results were satisfied.  相似文献   

15.
The efficiency of excited-state interaction between Tb3+ and the industrial product Cilostazol (CIL) has been studied in different solvents. High luminescence intensity peak at 545 nm of terbium complex in acetonitrile was obtained. The photophysical properties of the green emissive Tb3+ complex have been elucidated, the terbium was used as optical sensor for the assessment of CIL in the pharmaceutical tablets and body fluids at pH 3.1 and λex = 320 nm with a concentration range 1.0 × 10−9–1.0 × 10−6 mol L−1 of CIL, correlation coefficient of 0.998 and detection limit of 7.5 × 10−10 mol L−1.  相似文献   

16.
The conducting polymer electrolyte films consisting of polyacrylonitrile (PAN) as the host polymer, lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) as inorganic salts were prepared by the solution-cast technique. The pure PAN film was prepared as a reference. The ionic conductivity for the films is characterized using impedance spectroscopy. The room temperature conductivity for the PAN + 26 wt.% LiCF3SO3 film and the PAN + 24 wt.% NaCF3SO3 film is 3.04 × 10−4 S cm−1 and 7.13 × 10−4 S cm−1, respectively. XRD studies show that the complexation that has occurred in the PAN containing salt films and complexes formed are amorphous. The FTIR spectra results confirmed the complexation has taken place between the salt and the polymer. These results correspond with surface morphology images obtained from SEM analysis. The conductivity–temperature dependence of the highest conducting film from PAN + LiCF3SO3 and PAN + NaCF3SO3 systems follows Arrhenius equation in the temperature range of 303 to 353 K. The PAN containing 24 wt.% LiCF3SO3 film has a higher ionic conductivity and lower activation energy compared to the PAN containing 26 wt.%LiCF3SO3 film. These results can be explained based on the Lewis acidity of the alkali ions, i.e., the interaction between Li+ ion and the nitrogen atom of PAN is stronger than that of Na+ ion.  相似文献   

17.
We report a new kind of polyethylene oxide, PEO–LiCF3SO3-based composite polymer electrolyte, containing active copper oxide (CuO) nanoparticles with dibutyl phthalate (DBP) prepared by solution-cast technique. The incorporation of 10 wt.% DBP and 5 wt.% CuO to the salted polymer showed a significant conductivity enhancement with maximum conductivity 2.62 × 10−4 Scm−1 at room temperature. This could be attributed to the increasing of amorphous phase content and structural changes in the polymer electrolyte. Arrhenius plot suggest that temperature-dependent conductivity is a thermally activated process.  相似文献   

18.
A novel and simple fluorescence enhancement method for selective pyrophosphate(PPi) sensing was proposed based on a 1:1 metal complex formation between bis(8-hydroxy quinoline-5-solphonat) chloride aluminum(III) (Al(QS)2Cl), (L) and PPi in aqueous solution. The linear response range covers a concentration range of 1.6 × 10−7 to 1.0 × 10−5 mol/L of PPi and the detection limit of 2.3 × 10−8 mol/L. The association constant of L-PPi complex was calculated 2.6 × 105 L/mol. L was found to show selectively and sensitively fluorescence enhancement toward PPi over than I3-, NO3-, CN, CO32−, Br, Cl, F, H2PO4 and SO42−, which was attributed to higher stability of inorganic complex between pyrophosphate and L.  相似文献   

19.
Ion-conducting thin film polymer electrolytes based on poly(ethylene oxide) (PEO) complexes with NaAlOSiO molecular sieves powders has been prepared by solution casting technique. X-ray diffraction, scanning electron microscopy, differential scanning calorimeter, and alternating current impedance techniques are employed to investigate the effect of NaAlOSiO molecular sieves on the crystallization mechanism of PEO in composite polymer electrolyte. The experimental results show that NaAlOSiO powders have great influence on the growth stage of PEO spherulites. PEO crystallization decrease and the amorphous region that the lithium-ion transport is expanded by adding appropriate NaAlOSiO, which leads to drastic enhancement in the ionic conductivity of the (PEO)16LiClO4 electrolyte. The ionic conductivity of (PEO)16LiClO4-12 wt.% NaAlOSiO achieves (2.370 ± 0.082) × 10−4 S · cm−1 at room temperature (18 °C). Without NaAlOSiO, the ionic conductivity has only (8.382 ± 0.927) × 10−6 S · cm−1, enhancing 2 orders of magnitude. Compared with inorganic oxide as filler, the addition of NaAlOSiO molecular sieves powders can disperse homogeneously in the electrolyte matrix without forming any crystal phase and the growth stage of PEO spherulites can be hindered more effectively.  相似文献   

20.
In the present work, a novel blend polymer electrolyte membrane using poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and lithium per chlorate (LiClO4) in different compositions has been prepared by the solution-casting technique. Their chemical, structural characters, thermal behavior, surface morphology, and ionic conductivity were studied using Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric/differential thermal analyzer, scanning electron microscopy, and AC impedance analyzer, respectively. A maximum ionic conductivity value of 1.67 × 10−4 S/cm at 303 K is obtained for PVAc–PMMA–LiClO4 complexes in the ratio of 25 × 75, keeping LiClO4 constant as 10 wt.% among all the compositions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号