首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behaviors of an interface crack between dissimilar orthotropic elastic halfplanes subjected to uniform tension was reworked by use of the Schmidt method. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, of which the unknown variables are the jumps of the displacements across the crack surfaces. Numerical examples are provided for the stress intensity factors of the cracks. Contrary to the previous solution of the interface crack, it is found that the stress singularity of the present interface crack solution is of the same nature as that for the ordinary crack in homogeneous materials. When the materials from the two half planes are the same, an exact solution can be otained.  相似文献   

2.
Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces, deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable, while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam analyses (e.g., delamination buckling and vibration, etc.).  相似文献   

3.
The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios. The project supported by the National Natural Science Foundation of China  相似文献   

4.
For crack growth along an interface between dissimilar materials the effect of combined modes I, II and III at the crack-tip is investigated. First, in order to highlight situations where crack growth is affected by a mode III contribution, examples of material configurations are discussed where mode III has an effect. Subsequently, the focus is on crack growth along an interface between an elastic-plastic solid and an elastic substrate. The analyses are carried out for conditions of small-scale yielding, with the fracture process at the interface represented by a cohesive zone model. Due to the mismatch of elastic properties across the interface the corresponding elastic solution has an oscillating stress singularity, and this solution is applied as boundary conditions on the outer edge of the region analyzed. For several combinations of modes I, II and III crack growth resistance curves are calculated numerically in order to determine the steady-state fracture toughness. For given values of KI and KII the minimum fracture toughness corresponds to KIII=0 in most of the range analyzed, but there is a range where the minimum occurs for a nonzero value of KIII.  相似文献   

5.
A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh’s formalism. Motivated by strong engineering demands to design new composite materials, the authors perform numerical analysis of interface crack tip singularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Polymer, Al2O3, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than commercial piezoelectric ceramics is treated as a special transversely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: and , which is quite different from that in the impermeable interface crack. It can be concluded that different far field loading cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the electric field induced crack growth is well explained, which provides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials. The project supported by the National Natural Science Foundation of China (10572110), Doctor Foundation of the Chinese Education Ministry and Doctorate Foundation of Xi’an Jiaotong University. The English text was polished by Yunming Chen.  相似文献   

6.
The high-frequency elastodynamic problem involving the excitation of an interface crack of finite width lying between two dissimilar anisotropic elastic half-planes has been analyzed. The crack surface is excited by a pair of time-harmonic antiplane line sources situated at the middle of the cracked surface. The problem has first been reduced to one with the interface crack lying between two dissimilar isotropic elastic half-planes by a transformation of relevant co-ordinates and parameters. The problem has then been formulated as an extended Wiener–Hopf equation (cf. Noble, 1958) and the asymptotic solution for high-frequency has been derived. The expression for the stress intensity factor at the crack tips has been derived and the numerical results for different pairs of materials have been presented graphically.  相似文献   

7.
研究两半无限大黏弹性体间Griffith界面裂纹在简谐载荷作用下裂纹尖端动应力场的奇异特性.通过引入裂纹张开位移和裂纹位错密度函数,相应的混合边值问题归结为一组耦合的奇异积分方程.渐近分析表明裂尖动应力场的奇异特征完全包含在奇异积分方程的基本解中.通过对基本解的深入分析发现黏弹性材料界面裂纹裂尖动应力场具有与材料参数和外载荷频率相关的振荡奇异特性.以标准线性固体黏弹材料为例讨论了材料参数和载荷频率对奇性指数和振荡指数的影响.  相似文献   

8.
Bueckner‘s work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials. The difficulties in separating Stroh‘s six complex arguments involved in the integral for the dissimilar materials are overcome and then the explicit function representations of the integral are given and studied in detail. It is found that the pseudo-orthogonal properties of the eigenfunction expansion form (EEF) for a crack presented previously in isotropic elastic cases, in isotopic bimaterial cases, and in orthotropic cases are also valid in the present dissimilar arbitrary anisotropic cases. The relation between Bueckner‘s work conjugate integral and the J-integral in these cases is obtained by introducing a complementary stressdisplacement state. Finally, some useful path-independent integrals and weight functions are proposed for calculating the crack tip parameters such as the stress intensity factors.  相似文献   

9.
This paper gives a unified approach to analyze two-dimensional elastic deformations of a composite body consisting of two dissimilar anisotropic or isotropic materials perfectly bonded along a planar interface. The Eshelby et al. formalism of anisotropic elasticity is linked with that of Kolosov-Muskhelishvili for isotropic elasticity by means of two complex matrix functions describing completely the arising elastic fields. These functions, whose elements are holomorphic functions, are defined as the two-phase potentials of the bimaterial. The present work is concerned with bi-materials whose constituent materials occupy the whole space and are connected by a planar interface. The elastic fields arising in such a bimaterial are given by universal relationships in terms of the two-phase potentials. Then, the general results obtained are implemented to study two interesting bimaterial problems: the problem of a uniformly stressed bimaterial with a perfect interfacial bonding, and the interface crack problem of a bimaterial with a general loading. For both problems, all combinations of the elastic properties of the constituent materials are considered. For the first problem, the constraints, which must be imposed between the components of the applied uniform stress fields, are established, so that they are admissible as elastic fields of the bimaterial. For the interface crack problem, the solution is obtained for a general loading applied in the body. Detailed results are given for the case of a remote uniform stress field applied to the bimaterial constituents.  相似文献   

10.
Debonded region of an interface between two dissimilar materials are modeled as a line crack that tends to enhance the initiation of failure by fracture. Depending on the load that interacts with dissimilar materials, no a priori knowledge of how failure would initiate from an existing interface crack is assumed. By application of the strain energy density criterion, potential crack initiation sites are obtained for different biaxial loading states and materials with dissimilar properties.Numerical results are obtained for an epoxy/aluminum medium. In each case, a finite line segment of debonding is assumed. Uniform stresses are applied normal and parallel to the interface so that a biaxial load factor k determines the relative magnitude of biaxiality. Positive and negative k correspond, respectively, to applied tension and compression parallel to the interface. For a fixed ratio of the elastic moduli, crack initiation angles measured from the interface would increase with positive k and decrease with an increase of negative k. These findings are presented for different values of k. The direction of maximum yield initiation could also be determined from the stationary values of the strain density function. These locations are identified with elements that undergo excessive distortion while the possible fracture sites are assumed to coincide with regions where dilatational effects would dominate.  相似文献   

11.
IntroductionWiththedevelopmentofparticleandfiberreinforcedcomposites,theinclusion_crackinteractionproblemisbecominganimportantfieldbeingstudied .Andasamodel,itisalsousedtostudytheeffectsofmaterialdefectsonthestrengthandfractureofengineeringstructure.TheinterationbetweencircularinclusionandcrackwasstudiedinRefs.[1 -6 ] ;InRefs.[7-1 2 ] ,theinterationbetweenlineinclusionandcrackswasdiscussed ;TheinterationbetweenellipticalinclusionandcrackwasstudiedinRefs.[1 3,1 4] .However,withthedevelopmento…  相似文献   

12.
Crack bridging by discontinuous fibers can make brittle materials tougher by transferring stresses from the crack tip to elsewhere in the matrix material. One important aspect of crack bridging is the nature of the interface between the fibers and the matrix material. In this paper, a two-dimensional numerical model of bridging a Mode I loaded crack by linear elastic discontinuous platelets is developed for two different types of interfaces. The first type is a perfectly bonded interface. The second type is an imperfect interface described as a stick–slip interface. A shear-lag model to predict platelet pullout is developed in detail to verify the numerical implementation of the stick–slip interface. An example of a crack tip bridged by a platelet is examined for both interfaces. The perfectly bonded interface will reduce the Stress Intensity Factor (SIF) of the crack greatly but introduces new stress concentrations at the platelet ends. The stick–slip interface can be tailored to also reduce the SIF while not introducing new stress concentrations.  相似文献   

13.
One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.  相似文献   

14.
A crack terminating at an interface of two dissimilar elastic materials is investigated. It is found that the asymptotic stress field near the crack tip is in general composed of two parts with each part being characterized by one singularity. The detailed relation of the two singularities with the bimaterial properties is given for some special cases of the crack.  相似文献   

15.
The paper addresses the problem of a Mode III interfacial crack advancing quasi-statically in a heterogeneous composite material, that is a two-phase material containing elastic inclusions, both soft and stiff, and defects, such as microcracks, rigid line inclusions and voids. It is assumed that the bonding between dissimilar elastic materials is weak so that the interface is a preferential path for the crack. The perturbation analysis is made possible by means of the fundamental solutions (symmetric and skew-symmetric weight functions) derived in Piccolroaz et al. (2009). We derive the dipole matrices of the defects in question and use the corresponding dipole fields to evaluate “effective” tractions along the crack faces and interface to describe the interaction between the main interfacial crack and the defects. For a stable propagation of the crack, the perturbation of the stress intensity factor induced by the defects is then balanced by the elongation of the crack along the interface, thus giving an explicit asymptotic formula for the calculation of the crack advance. The method is general and applicable to interfacial cracks with general distributed loading on the crack faces, taking into account possible asymmetry in the boundary conditions.The analytical results are used to analyse the shielding and amplification effects of various types of defects in different configurations. Numerical computations based on the explicit analytical formulae allows for the analysis of crack propagation and arrest.  相似文献   

16.
李冉  万永平 《力学季刊》2019,40(4):740-752
本文研究了含非完整界面的功能梯度压电复合材料的Ⅲ型裂纹问题.此裂纹垂直于非完整界面,采用弹簧型力电耦合界面模型模拟非完整界面.界面两侧材料的性质,如弹性模量、压电常数和介电常数均假定呈指数函数形式且沿着裂纹方向变化.运用积分变换法将裂纹面条件转换为奇异积分方程,并使用Gauss-Chebyshev方法对其进行数值求解.根据算例结果讨论了一些退化问题并分析了裂纹尖端强度因子与材料的非均匀系数和非完整界面参数的关系.  相似文献   

17.
The slip lines at the tip of a mode I crack are analyzed by using the Wiener–Hopf technique within the scope of a plane (plane-strain) static problem of elastic theory. The crack terminates at the interface with a corner point between two isotropic media. The slip lines are located at the interface. They simulate the plastic zone near the crack tip in a piecewise-homogeneous quasibrittle body in the case where the contacting materials are much stiffer than the more plastic bonding material.  相似文献   

18.
Summary  A correspondence principle is established between elastic and piezoelectric problems for transversely isotropic materials, in such a way that the knowledge of an elastic solution yields fully coupled electro–elastic fields for the corresponding piezoelectric problem, provided the elastic solution is written in a certain form. The implementation of this principle is illustrated by constructing, in a routine way, several piezoelectric solutions involving crack and punch problems (one of them has not been solved previously). Received 12 Feburary 2002; accepted for publication 29 April 2002  相似文献   

19.
A general solution for the stresses and displacements of a cracked sliding interface between anisotropic bimaterials subjected to uniform tensile stress at infinity is given by using the Stroh’s formulation. Horizontal and vertical opening displacements on the interface, stress intensity factors, and energy release rate are expressed in real form, which are valid for any kind of anisotropic materials including the degenerate materials such as isotropic materials. It is observed that stresses exhibit the traditional inverse square root singularities near the crack tips, and the vertical opening displacement and energy release rate are intimately related to a real parameter λ determined by the elastic constants of the anisotropic bimaterials.  相似文献   

20.
Summary  The steady-state of a propagation eccentric crack in a piezoelectric ceramic strip bonded between two elastic materials under combined anti-plane mechanical shear and in-plane electrical loadings is considered in this paper. The analysis based on the integral transform approach is conducted on the permeable crack condition. Field intensity factors and energy release rate are obtained in terms of a Fredholm integral equation of the second kind. It is shown for this geometry that the crack propagation speed has influence on the dynamic energy release rate. The initial crack branching angle for a PZT-5H piezoceramic structure is predicted by the maximum energy release rate criterion. Received 23 January 2001; accepted for publication 18 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号