首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a new doubly responsive polymeric system of amphiphilic diblock copolymers, namely poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate), PDEGMA-b-PDIPAEMA, obtained by the reversible addition-fragmentation chain transfer (RAFT) polymerization technique. Molecular characterization by size exclusion chromatography (SEC), nuclearmagnetic resonance (1H-NMR) and infrared spectroscopy (FT-IR) confirms the successful synthesis of these novel block copolymers. The PDEGMA-b-PDIPAEMA block copolymers formed aggregates in aqueous media in response to solution pH and temperature changes, as evidenced by dynamic and static light scattering techniques, as well as fluorescence spectroscopy. Aggregates with PDEGMA core and PDIPAEMA corona domains are formed at elevated temperatures and low pH, whereas aggregates with PDIPAEMA cores and PDEGMA coronas are formed at neutral and high pH. Overall structural characteristics and solution behavior of the copolymers are affected by the copolymer composition. The obtained results provide valuable new information on the behavior and design guidelines for the construction of stimuli responsive, “schizophrenic” polymeric nanostructures with potential application in the biomedical field.  相似文献   

2.
We present a one-pot synthesis for well-defined nanostructured polymeric microparticles formed from block copolymers that could easily be adapted to commercial scale. We have utilized reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare block copolymers in a dispersion polymerization in supercritical carbon dioxide, an efficient process which uses no additional solvents and hence is environmentally acceptable. We demonstrate that a wide range of monomer types, including methacrylates, acrylamides, and styrenics, can be utilized leading to block copolymer materials that are amphiphilic (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylacrylamide)) and/or mechanically diverse (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylaminoethylmethacrylate)). Interrogation of the internal structure of the microparticles reveals an array of nanoscale morphologies, including multilayered, curved cylindrical, and spherical domains. Surprisingly, control can also be exerted by changing the chemical nature of the constituent blocks and it is clear that selective CO(2) sorption must strongly influence the block copolymer phase behavior, resulting in kinetically trapped morphologies that are different from those conventionally observed for block copolymer thin films formed in absence of CO(2).  相似文献   

3.
The star-shaped poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (HPs-Star-PCL-b-PDMAEMA) was synthesized by ring-opening polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization. Star-shaped polycaprolactones (HPs-Star-PCL) were synthesized by the bulk polymerization of ε-caprolactone (CL) with a hyperbranched polyester initiator and tin 2-ethylhexanoate as a catalyst. The number-average molecular weight of these polymers linearly increased with the increase of the molar ratio of CL to hyperbranched initiator. HPs-Star-PCL was converted into a HPs-star-PCL-RAFT by an esterification of HPs-Star-PCL and 4-cyanopentanoic acid dithiobenzoate. Star amphiphilic block copolymer HPs-Star-PCL-b-PDMAEMA was obtained via RAFT polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA). The molecular weight distribution of HPs-Star-PCL-b-PDMAEMA was narrow. Furthermore, the micellar properties of HPs-Star-PCL-b-PDMAEMA in water were studied at various temperatures and pH values by means of dynamic light scattering (DLS). The results indicated that the star copolymers had the pH- and temperature-responsive properties. The release behaviors of model drug aspirin from the star polymer indicated that the rate of drug release could be effectively controlled by pH value and temperature.  相似文献   

4.
Poly(vinyl acetate)-b-polystyrene, poly(vinyl acetate)-b-poly(methyl acrylate) and poly(vinyl acetate)-b-poly(methyl methacrylate) block copolymers with low polydispersity (M(w)/M(n) < 1.25) were prepared by successive reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) employing a bromoxanthate iniferter (initiator-transfer agent-terminator).  相似文献   

5.
本文以聚甲基丙烯酸甘油酯(PGMA)作为大分子链转移剂、甲基丙烯酸羟丙酯(HPMA)为单体、苯基钠盐-三甲基苯甲酰亚磷酸盐(SPTP)为引发剂,通过水相光引发可逆加成-断裂链转移(RAFT)分散聚合制备了一系列PGMA-b-PHPMA共聚物纳米材料。考察了水相光引发聚合诱导自组装的反应动力学,在温和条件下(水相、可见光和室温)成功得到不同形貌的聚合物纳米材料(球形、纤维和囊泡),并进一步探究了反应条件对嵌段聚合物形貌的影响。聚合反应的激活或暂停都可以通过对光源的简单"开/关"进行控制。  相似文献   

6.
Gu  Zi-xu  Cheng  Jun  Zhang  Ming-zu  He  Jin-lin  Ni  Pei-hong 《高分子科学》2017,35(9):1061-1072
Due to the non-crystalline properties of short chain perfluoroalkyl groups,using short chain perfluoroalkyl to stabilize low surface free energy polymers has been a challenging task.In this study,we prepare a series of random copolymers poly(perfluorohexylethyl methacrylate)-co-poly(stearyl acrylate) (P13FMA-co-PSA) and block copolymers poly(perfluorohexylethyl methacrylate)-b-poly(stearyl acrylate) (P13FMA-b-PSA),and systematically investigate the effects of the sequence structure and the content of 13FMA of the fluorinated copolymers on surface free energy and surface reorganization.Static/dynamic contact angle goniometry and water/oil repellency analyses demonstrate that the random polymer P13FMA-co-PSA could not achieve low surface free energy and low surface reorganization at the same time.In contrast,for the block copolymer P13FMA-b-PSA,both low surface free energy and low surface reorganization are acquired simultaneously.The results of X-ray photoelectron spectroscopy (XPS),dynamic contact angle goniometry and differential scanning calorimetry (DSC) reveal the above-mentioned properties.The consecutive 13FMA segments improve the surface fluorine density,while the consecutive SA chains enhance the crystallinity of the SA segments,and further hinder the surface reorganization of the perfluoroalkyl groups.Therefore,P13FMA-b-PSA exhibits a higher utilization efficiency of fluorine atoms and a better structural stability than P13FMA-co-PSA.  相似文献   

7.
The thermosensitive block copolymer poly(2-cinnamoylethyl methacrylate)-block-poly(N-isopropylacrylamide) (PCEMA-b-PNIPAAm) can form crew-cut aggregates with multiple morphologies under various micellization conditions. Spherical, rod-like, vesicular, lamellar aggregates, and large compound micelles were obtained from the block copolymers. The effects of different conditions, such as the copolymer composition, the nature of the common solvent, the initial copolymer concentrations, and the water content on the morphologies of the aggregates were studied in detail. The thermosensitive property of the aggregates was investigated through measuring the change of the dimension of the aggregates with changing the external temperature.  相似文献   

8.
In this work, we aimed to study the association and interaction behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers grafted with poly(vinylpyrrolidone). Critical micellization concentrations were determined using fluorescent probes (pyrene) and critical micellization temperatures characterizing temperature-dependent transitions from monomers to multimolecular micelles were measured. The thermal responsiveness of the copolymer is not affected by the grafting. The hydrodynamic radius of the graft copolymer micelles is found to be greater than that of the original copolymer micelles. The graft copolymer is found to form anisotropic aggregates. The structure of the graft copolymer micelles is less disrupted by the anionic surfactant sodium dodecyl sulfate, compared to the ungraft copolymer.  相似文献   

9.
利用ATRP技术合成聚甲基丙烯酸甲酯-b-聚甲基丙烯酸丁酯(或聚甲基丙烯酸十八烷基酯)-b-聚(甲基丙烯酸2-全氟辛基乙酯)(PMMA230-b-PBMA12(或PODMA12)-b-PFMAn)嵌段共聚物.通过X射线光电子能谱(XPS)、X射线衍射(XRD)、动态光散射(DLS)等技术研究了中间段选择性成膜溶剂对氟化...  相似文献   

10.
采用洗滤-萃取法去除原子转移自由基聚合法(ATRP)制备的聚甲基丙烯酸甲酯-聚L-乳酸-聚甲基丙烯酸甲酯(PMMA-b-PLLA-b-PMMA)嵌段共聚物中残留金属Cu离子。结果表明,采用二氯甲烷(DCM)溶解共聚物,用水或酸水洗滤-萃取,当重复洗滤-萃取5次后,Cu离子的去除率能达到99%,所得嵌段共聚物的收率高于80%。与过Al2O3层析柱或溶剂溶解-沉淀方法相比,洗滤-萃取法操作简单、可节省大量的有机溶剂,具有工业化前景。  相似文献   

11.
Amphiphilic block copolymers, i.e., poly(methyl methacrylate)-b-poly(2-dimethylethylammoniumethyl methacrylate), were synthesized by the reaction between two prepolymers. Carboxyl-terminated poly(methyl methacrylate) and hydroxyl-terminated poly(2-dimethylaminoethyl methacrylate) were prepared by radical polymerization of the corresponding monomers in the presence of thioglycolic acid and 2-mercaptoethanol as a chain transfer agent, respectively. Two condensation methods, i.e., DCC and the acid chloride method, were used for the reactions of these prepolymers. The subsequent quarternization produced the amphiphilic block copolymers. Surface property of poly(methyl methacrylate) films containing this amphiphilic block copolymer was examined by measuring contact angles for water. The addition of only 0.5 wt% of the block copolymer was sufficient to make poly(methyl methacrylate) surfaces hydrophilic. The block copolymer formed a polymeric micelle in acetone–water mixed solvent.  相似文献   

12.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

13.
Comb-like amphiphilic block copolymers of maleic anhydride (MA) and stearyl methacrylate (SMA) were prepared through the reversible-addition-fragmentation-transfer polymerization. The resultant copolymers were characterized by gel permeation chromatograph and 1H NMR. The aggregation behaviors of P(MA-alt-SMA)-b-PSMA were investigated in tetrahydrofuran/water. It is of great interest that the aggregates with different morphologies and dimensions could be obtained by adjusting the polymer concentration, water content, and pH. The dimension and structure of these aggregates were investigated by transmission electron microscopy and dynamic light scattering. The effect of the copolymer–solvent interaction on these aggregations was discussed.  相似文献   

14.
Poly(N-isopropylacrylamide)-b-poly(vinylpyridine) (PNIPAAm-b-PVP) and poly(N-isopropylacrylamide-co-hydroxylethyl methacrylate)-b-poly(vinylphenol) (P(NIPAAm-co-HEMA)-b-PVPhol) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Above two copolymers could form complex in pure water and in DMF/water environment with the DMF content lower than 40% by hydrogen bondings. The morphologies of the complex were investigated by transmission electron microscope (TEM). It was found that the dimension of the complex in strong acid (pH 1.0) or base environment (pH 12.0) was smaller than the one in weak acid or in neutral environment. After the shell cross-linking of the complex, the complex showed a type of "swollen" state in acid or base environment which is similar to the properties of microgel.  相似文献   

15.
The self-assembly of the biamphiphilic triblock copolymer poly(ethylene oxide)-b-poly(caprolactone)-b-poly(acrylic acid) into polymer vesicles is studied. The vesicles provide both biocompatibility and biodegradability. Moreover, the biamphiphilic nature of the triblock copolymer provides different surface properties in the interior and in the outer interface of the vesicles. Preparation of the aggregates by direct dissolution of the copolymer in a solution of albumin does not alter the morphology of the aggregates, and thus, they have the potential to immobilize protein molecules. Since a part of the protein is encapsulated in the interior of the vesicles, they can be used as nanocontainers. A further fraction of the protein is bound to the outer interface, which is primarily composed of the poly(acrylic acid) tails. Immobilization of protein on the outer interface can stabilize the colloidal particles and also provide them with a biofunctional component.  相似文献   

16.
Copolymers containing styrene and alkyl methacrylate (n-butyl-, n-hexyl-, or stearyl methacrylate) at different compositions have been prepared by radical copolymerization. The monomer reactivity ratios were estimated using the Finemann-Ross, the inverted FR and the Kelen-Tüdos graphical methods. Structural parameters of the copolymers were obtained calculating the dyad monomer sequence fractions. The effect of the size of the alkyl methacrylate on the copolymer structure is discussed. The glass transition temperature, Tg of the copolymers with butyl and hexyl methacrylate was examined in the frame of several theoretical equations allowing the prediction of these Tg values. The best fit was obtained using methods that take into account the monomer sequence distribution of the copolymers. The copolymers of styrene with stearyl methacrylate exhibited the characteristic melting endotherm, due to the crystallinity of the methacrylate sequences and the polystyrene glass transition temperature.  相似文献   

17.
INTRODUCTIONRecently, solution-state assembly of block copolymers has attracted much interest. On the one hand, theversatility of morphology control can be used for the preparation of unique nanostructured materials with variousarchitectures[1-8]. On the other hand, some self-assembled structures are biomimetic[9,10]. The balance betweenthree major forces acting on the system affects block copolymer morphologies in solutions[11,12]. These threeforces include the stretching of the core-for…  相似文献   

18.
Poly(N-isopropylacrylamide)-b-poly(2-vinylpyridine) (PNIPAM-b-P2VP) block copolymers were synthesized for the first time via reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of S-1-dodecyl-S(')-(a,a(')-dimethyl-a(')-acetic acid)trithiocarbonate as chain transfer agent (CTA) and 2,2(')-azobis(isobutyronitrile) as initiator. Both pH- and thermo-induced micellization behavior of the PNIPAM(59)-b-P2VP(102) block copolymer in dilute aqueous solution was investigated by pyrene fluorescence, dynamic and static light scattering, transmission electron microscopy and (1)H NMR. The results show that the critical aggregation pH value of the block copolymer is around 5 and the critical aggregation temperature of the block copolymer is around 42 degrees C. A reversible transition between P2VP-core and PNIPAM-core micelles can be observed through an intermediate unimer state in aqueous solution.  相似文献   

19.
通过使用药物运载体系来提高抗菌物质的使用效率是应对抗生素耐药性的有效途径.本文报道了一种制备细菌酶响应聚合物囊泡作为"智能型"抗菌剂载体的方法.通过可逆加成-断裂链转移聚合(RAFT)制备的脂酶和硝基还原酶响应的二嵌段共聚物PEG-b-PA和PEG-b-PN,能够在水溶液中自组装形成聚合物囊泡组装体.该囊泡组装体在没有酶存在的条件下相对稳定,而在脂酶或硝基还原酶的作用下发生从囊泡到核交联胶束的形貌转变.基于这一转变过程实现了负载在囊泡中的抗菌剂(三氯生,抗菌肽Parasin Ⅰ和溶菌酶)的选择性释放,并研究了针对大肠杆菌(E.coli,革兰氏阴性菌)、金黄色葡萄球菌(S.aureus,革兰氏阳性菌)和白色念珠菌(C.albicans,真菌)的生长抑制效果.  相似文献   

20.
The amphiphilic gradient copolymers of 2,2,2-trifluoroethyl methacrylate (TFEMA) and acrylic acid (AA) have been synthesized by using amphiphilic RAFT agent via emulsifier-free emulsion polymerization with a starved feed method of adding TFEMA. Different cosolvents are added into polymerization system to inhibit AA's homopolymerization of in aqueous phase. RAFT polymerization kinetics under different reaction conditions are discussed in detail. (1)H NMR results indicate that the obtained copolymer has a chain structure with AA segments gradually changing to TFEMA segments. The copolymer latexes exhibit good pH stability (pH value from 5 to 14) and Ca(2+) stability. The self-assembly behavior of gradient copolymers in selective solvents are observed and studied by transmission electron microscopy. All the copolymers can form spherical micelles, but the homogeneity and size of micelles are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号