首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex formation between sodium carboxymethylcellulose (NaCMC) and dodecyltrimethylammonium bromide (DTAB) at various sodium bromide concentrations (C(NaBr)) has been studied by microcalorimetry, turbidimetric titration, steady-state fluorescence measurements, and the fluorescence polarization technique. The addition of salt is found to influence the formation of NaCMC/DTAB complexes markedly. At C(NaBr) = 0.00, 0.01, 0.02, 0.10, and 0.20 M, DTAB monomers form micelle-like aggregates on NaCMC chains to form NaCMC/DTAB complexes above the critical surfactant concentration (C1). At C(NaBr) = 0.23 M, DTAB molecules first form micelles above a 2.46 mM DTAB concentration prompted by the added salt, and then, above C1 = 4.40 mM, these micelles can aggregate with NaCMC chains to form NaCMC/DTAB complexes. However, at C(NaBr) = 0.25 M, there is no NaCMC/DTAB complex formation because of the complete salt screening of the electrostatic attraction between DTAB micelles and NaCMC chains. It is also surprisingly found that the addition of NaBr can bring out a decrease in C1 at C(NaBr) < 0.20 M. Moreover, the addition of NaBr to a mixture of 0.01 g/L NaCMC and 3.6 mM DTAB can directly induce the formation of NaCMC/DTAB complexes. This salt-enhancing effect on the complex formation is explained as the result of competition between the screening of interaction of polyelectrolyte with surfactant and the increasing of polyelectrolyte/surfactant interaction owing to the growth of micelles by added salt. When the increasing of polyelectrolyte/surfactant interaction exceeds the screening of interaction, the complex formation can be enhanced.  相似文献   

2.
The salt effect on the complex formation of poly(acrylamide)- block-poly(sodium acrylate) (PAM- b-PAA) as a neutral-anionic block copolymer and dodecyltrimethylammonium bromide (DTAB) as a cationic surfactant at different NaBr concentrations, CNaBr, was investigated by turbidimetric titration, steady-state fluorescence spectroscopy, and dynamic light scattering. At C NaBr < 0.25 M, DTAB molecules may form micelle-like aggregates on PAM- b-PAA chains to form a PAM- b-PAA/DTAB complex above the critical surfactant concentration C critical for the onset of complex formation. In the region of relatively high turbidity, a larger complex is likely to form a core-shell structure, of which the core is a dense and disordered microphase made of surfactant micelles connected by the PAA blocks. The corona was a diffuse shell of PAM chains, and it ensured steric stability. At CNaBr = 0.25 M, a higher electrostatic intermicellar repulsion and intercomplex repulsion induced by a large amount of bound DTAB micelles may lead to a redissolution of large colloidal complexes into intrapolymer complexes. Moreover, a salt-enhancing effect on the complex formation was observed in the PAM- b-PAA/DTAB system; the critical surfactant concentration decreased with increasing salt concentration at CNaBr < 0.10 M. The salt-enhancing effect is due to the larger increase of interaction in comparison to the screening of the interaction.  相似文献   

3.
Complexation of DNA with cationic gemini surfactant in aqueous solution   总被引:1,自引:0,他引:1  
Interactions between DNA and the cationic gemini surfactant trimethylene-1,3-bis(dodecyldimethylammonium bromide) (12-3-12) in aqueous solution have been investigated by UV-vis transmittance, zeta potential, and fluorescence emission spectrum. Complexes of DNA and gemini surfactant are observed in which the negative charges of DNA are neutralized by cationic surfactants effectively. The DNA-induced micelle-like structure of the surfactant due to the electrostatic and hydrophobic interactions is determined by the fluorescence spectrum of pyrene. It is found that the critical aggregation concentration (CAC) for DNA/12-3-12 complexes depends little on the addition of sodium bromide (NaBr) because of the counterbalance salt effect. However, at high surfactant concentration, NaBr facilitates the formation of larger DNA/surfactant aggregates. Displacement of ethidium bromide (EB) by surfactant evidently illustrates the strong cooperative binding between surfactant and DNA. In contrast to that in the absence of surfactant, the added NaBr at high surfactant concentration influences not only the binding of surfactant with DNA, but also the stability of DNA/EB complex.  相似文献   

4.
We have investigated the static and dynamic structures of nonionic surfactant micelles, a C(12)E(8)/water binary system, during the disorder-order transition using small angle x-ray scattering, static light scattering, and dynamic light scattering techniques. In the disordered phase, the micelles have spherical shape and intermicellar interactions are governed by the hard core and weak long ranged attractive potentials. With increase of the micellar concentration, the disordered micelles transform to the three characteristic ordered micellar phases, a hexagonally close packed lattice, a body centered cubic lattice, and an A15 lattice having area-minimizing structure. The stability of these phases is well explained by balance of a close packing rule and a minimal-area rule proposed by Ziherl and Kamien [Phys. Rev. Lett. 85, 3528 (2000)]. The role of hydrodynamic interactions in surfactant micellar solutions was compared with that in hard sphere colloidal particle suspensions.  相似文献   

5.
The structural and dynamic properties of low ionic strength micellar solutions of the cationic surfactant perfluorooctylbutane trimethylammonium bromide have been investigated by cryo-TEM, small-angle neutron scattering, small-angle X-ray scattering, T-jump and rheological experiments. The surfactant molecules self-assemble into narrow ribbons with average dimensions on the order of 4 nm x 3 nm, either under salt-free conditions or in the presence of up to 30 mM KBr or NaF. Cryo-TEM also reveals in the salt-free systems the presence of networks of multiconnected micelles. Rheological experiments showed that these surfactant systems exhibit a strong shear-thickening effect even in the presence of up to 30 mM KBr. The T-jump response of the micellar solutions was found to be multiexponential. This observation rules out the presence of only linear micelles with an exponential length distribution and suggests more complex topologies of the micellar aggregates. The relaxation time associated with the predominant process in the T-jump relaxation is strongly correlated to the critical shear rate beyond which shear thickening occurs, thus indicating that this critical shear rate is controlled by the micellar kinetics.  相似文献   

6.
The self-assembly in aqueous solution of the acidic (AS) and lactonic (LS) forms of the sophorolipid biosurfactant, their mixtures, and their mixtures with anionic surfactant sodium dodecyl benzene sulfonate, LAS, has been studied using predominantly small-angle neutron scattering, SANS, at relatively low surfactant concentrations of <30 mM. The more hydrophobic lactonic sophorolipid forms small unilamellar vesicles at low surfactant concentrations, in the concentration range of 0.2 to 3 mM, and transforms via a larger unilamellar vesicle structure at 7 mM to a disordered dilute phase of tubules at higher concentrations, 10 to 30 mM. In marked contrast, the acidic sophorolipid is predominantly in the form of small globular micelles in the concentration range of 0.5 to 30 mM, with a lower concentration of larger, more planar aggregates (lamellar or vesicular) in coexistence. In mixtures of AS and LS, over the same concentration range, the micellar structure associated with the AS sophorolipid dominates the mixed-phase behavior. In mixtures of anionic surfactant LAS with the AS sophorolipid, the globular micellar structure dominates over the entire composition and concentration range studied. In contrast, mixtures of LAS with the LS sophorolipid exhibit a rich evolution in phase behavior with solution composition and concentration. At low surfactant concentrations, the small unilamellar vesicle structure present for LS-rich solution compositions evolves into a globular micelle structure as the solution becomes richer in LAS. At higher surfactant concentrations, the disordered lamellar structure present for LS-rich compositions transforms to small vesicle/lamellar coexistence, to lamellar/micellar coexistence, to micellar/lamellar coexistence, and ultimately to a pure micellar phase as the solution becomes richer in LAS. The AS sophorolipid surfactant exhibits self-assembly properties similar to those of most other weakly ionic or nonionic surfactants that have relatively large headgroups. However, the more hydrophobic nature of the lactonic sophorolipid results in a more complex and unusual evolution in phase behavior with concentration and with concentration and composition when mixed with anionic surfactant LAS.  相似文献   

7.
Salt effect on the interaction of anionic polyelectrolyte sodium carboxymethylcellulose (NaCMC) with cationic gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) [C12H25(CH3)2N(CH2)6N(CH3)2C12H25]Br2 (C12C6C12Br2) has been investigated using turbidimetric titration, steady-state fluorescence, and mobility measurement. It is found that the critical aggregation concentration(cac) for C12C6C12Br2/NaCMC complexes depends little on addition of sodium bromide (NaBr). However, in the presence of nonionic surfactant Triton X-100 (TX100), the critical ionic surfactant mole fraction for the onset of complex formation (Yc) increases markedly with increasing NaBr concentration. These salt effects are supposed as the overall result from competition between the increase of interaction and the screening of interaction. The increase of interaction is referred to as the effect that the larger micelle with higher surface charge density induced by salt has a stronger interaction with oppositely charged polyelectrolyte. The screening of interaction is referred to as the salt screening of electrostatic attraction between the polymer chain and the surfactant. For complex formation between C12C6C12Br2 and NaCMC, the increase of interaction probably compensates the screening of interaction, leading to constant cac values at different salt concentrations. For complex formation between the C12C6C12Br2/TX100 mixed micelle and NaCMC, the screening of interaction probably plays a dominant role, leading to higher suppression of electrostatic binding of micelles to polyelectrolyte.  相似文献   

8.
The deswelling kinetics of single sodium polyacrylate gel beads (radius 40-160 microm) in aqueous solutions of cetyltrimethylammonium bromide under conditions of forced convection are investigated using micromanipulator assisted light microscopy. The purpose of the study is to further evaluate a previously published model (J. Phys. Chem. B 2003, 107, 9203) using a higher homolog surfactant. For gels with expected fast deswelling (small gel size/low surfactant concentration) and/or in low electrolyte concentration, the model is found to correctly predict the deswelling characteristics of the gel beads. However, for some gels with expected slow deswelling, especially in high electrolyte concentration (10 mM NaBr), the model widely underestimates the required deswelling time. The reason for this is argued to be the longer time frame and high bromide concentration allowing the formation of a denser, more ordered structure in the surface phase, which resists the deformation and reorganization of material necessary for deswelling. Unexpectedly long lag times before the start of deswelling are also found for gels in low surfactant concentration, indicating that a relatively high surfactant concentration in the gel, greatly exceeding the critical aggregation concentration, is needed to start formation of a collapsed surface phase. This critical surfactant concentration is found to be dependent on initial gel radius, as small gels require a relatively higher concentration to initiate collapse.  相似文献   

9.
We report the observation of an intermediate mesh phase with rhombohedral symmetry, corresponding to the space group Rm, in a mixed surfactant system formed by the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN). It occurs between a random mesh phase (L(alpha)(D)) and a lamellar phase (L(alpha)) at low temperatures; at higher temperatures, the (L(alpha)(D)) phase transforms continuously into the (L(alpha)) phase with an increasing surfactant concentration (phi(s)). To separate the effects of salt and phi(s) on the phase behavior, the ternary system consisting of cetyltrimethylammonium 3-hydroxy-naphthalene-2-carboxylate (CTAHN), sodium bromide (NaBr), and water was studied. The intermediate mesh phase is found in this system at high NaBr concentrations. The micellar aggregates, both in the intermediate and random mesh phases, are found to be made up of a two-dimensional network of rod-like segments, with three rods meeting at each node. The average mesh size increases with phi(s), and the transition from the random mesh phase to the intermediate phase is found to occur when it is approximately 1.5 times the lamellar periodicity. The intermediate mesh phase is absent in the equimolar dodecyltrimethylammonium bromide (DTAB)-SHN system, indicating the role of the surfactant chain length in the formation of this phase. This system exhibits a random mesh phase over a very wide range of water content, with the average mesh size decreasing upon an increasing phi(s), contrary to the trend seen in the CTAB-SHN system.  相似文献   

10.
11.
Mixed micelle formation and interfacial properties of aqueous binary surfactant combinations of dodecyltrimethylammonium bromide (C12TAB) and tetraethyleneglycol mono-n-dodecyl ether (C12E4) at 30 degrees C in absence and presence of sodium propionate (NaPr) have been investigated. The critical micelle concentration, aggregation number, micropolarity and interfacial adsorption have been quantitatively estimated by surface tension and steady-state fluorescence measurements. The micellar and adsorption characteristics like composition, activity coefficients and mutual interaction parameters have been estimated following different theoretical treatments like that of Clint, Rubingh, Rodenas, Maeda, Blankschtein and Rosen. The analysis reveals very small mole fraction of cationic surfactant in both the mixed micelles and mixed monolayer inspite of synergism. Blankschtein's model predicts a continuous decrease in synergism due to the salt effect of NaPr; Rubingh's approach, on the contrary, indicates an increase in it above 30 mM of NaPr concentration. Aggregation number variation with NaPr indicates the same. Mixed monolayer shows better synergism compared to that in mixed micelles which increases with the addition of sodium propionate above 30 mM concentration.  相似文献   

12.
Amino acid-based anionic surfactant, N-dodecanoylglutamic acid, after neutralizing by 2, 2′, 2″-nitrilotriethanol forms micellar solution at 25 °C. Addition of cationic cosurfactants hexadecyltrimethylammonium chloride (CTAC), hexadecylpyridinium chloride (CPC), and hexadecylpyridinium bromide (CPB) to the semi-dilute solution of anionic surfactant micellar solutions favor the micellar growth and after a certain concentration, entangled rigid network of wormlike micelles are formed. Viscosity increases enormously ~4th order of magnitude compared with water. With further addition of the cosurfactants, viscosity declines and phase separation to liquid crystal occurs. The wormlike micelles showed a viscoelastic behavior and described by Maxwell model with a single stress-relaxation mode. The position of viscosity maximum in the zero-shear viscosity curve shifts towards lower concentration upon changing cosurfactant from CPB to CTAC via CPC; however, the maximum viscosity is highest in the CPB system showing the formation of highly rigid network structure of wormlike micelles. In all the systems, viscosity decays exponentially with temperature following Arrhenius type behavior.  相似文献   

13.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

14.
In order to investigate the effect of added salt on micelle size, shape, and structure the solubilization of Orange OT in aqueous NaBr solutions of decylpyridinium bromide (DePB), dodecylpyridinium bromide (DPB), tetradecylpyridinium bromide (TPB), and hexadecylpyridinium bromide (CPB) has been examined. The solubilization powers of DePB and DPB micelles increase with increasing NaBr concentration up to 2.86 and 3.07 mol dm–3, respectively, but above these concentrations remain unaltered. This suggests that spherical micelles of DePB and DPB can have a maximum and constant size at NaBr concentrations higher than these threshold concentrations. On the other hand, the solubilization powers of TPB and CPB micelles increase in the whole range of NaBr concentration studied. The dependencies of the solubilization powers of their micelles on the counterion concentration change at 0.10 and 0.03 mol dm–3 NaBr, respectively, as suggests that TPB and CPB micelles undergo the sphere–rod transition at those concentrations. Orange OT is a more suitable probe for detecting the presence of the maximum- and constant-size spherical micelle than Sudan Red B.  相似文献   

15.
高稳定的囊泡广泛用于制作生物模型、药物输送以及合成纳米材料的模板。获得高稳定囊泡结构的重要方法之一是用聚合反应固定囊泡结构。作为可聚合囊泡制备的前期基础工作,研究了一种可聚合的囊泡体系:1-丙烯基-2,2,二甲基-十二烷基溴化胺(ADDB)和ADDB与十二烷基磺酸钠(SDS)的等摩尔比混合体系。该囊泡体系即使在高浓度盐水中也能够自发地形成均相的囊泡溶液。在聚合之前,采用动态激光光散射(DLS)、冷冻蚀刻透射电镜(FF-TEM)技术研究了可聚合囊泡的盐效应。DLS测试发现没有盐存在时,囊泡大小为83 nm,盐的浓度增加到250 mmol/L时,囊泡尺寸增大到250 nm。然而继续增大盐浓度到1000 mmol/L, 囊泡尺寸减小到180nm. FF-TEM结果发现盐浓度小于150 mM时, 单个囊泡为70 nm左右,然而明显存在囊泡的絮凝与融合;当盐浓度增加到400 mM时,单个囊泡尺寸减小到20 nm. 因此DLS 观测到囊泡尺寸增大的原因是由于囊泡的絮凝与融合;而尺寸减小的原因是由于在高盐浓度下,盐屏蔽了带电颗粒之间的静电相互作用,在熵增的驱使下,大囊泡变成小囊泡。  相似文献   

16.
The phase behavior of 2-hydroxy-1-naphthoic acid (2,1-HNC) mixed with cetyltrimethylammonium hydroxide (CTAOH) is reported. This novel system is compared with the published one of 3-hydroxy-2-naphthoic acid (3,2-HNC) mixed with CTAOH. We investigated the phase behavior and properties of the phases in aqueous solutions of 100 mM CTAOH with 2,1-HNC. In both systems a multilamellar vesicle phase is formed when the naphthoate/surfactant ratio (r) reaches unity. When an increasing amount of 2,1-HNC is mixed with a micellar solution of 100 mM CTAOH, an isotropic low-viscous micellar solution, a viscoelastic gel (consisting of rodlike micelles), a turbid region (two-phase region), and a viscoelastic liquid crystalline gel (consisting of multilamellar vesicles, MLV) were formed. The vesicular phase is highly viscoelastic and has a yield stress value. The transition from the micellar to the vesicle phase occurs for CTAOH/2,1-HNC over a two-phase region, where micelles and vesicles coexist. Also it was noticed that 2,1-HNC is dissolved in 100 mM CTAOH until the naphthoate/surfactant ratio reaches approximately 1.5, and the liquid crystalline phases were found to change their color systematically when they were viewed between two crossed polarizers. The vesicles have been characterized by differential interference contrast microscopy, freeze-fracture electron microscopy, and cryo-electron microscopy (cryo-TEM). The vesicles were polydisperse and their diameter ranged from 100 to 1000 nm. The interlamellar spacing between the bilayers was determined with small angle neutron scattering and agrees with the results from different microscopical methods. The complex viscosity rises by six orders of magnitude when rodlike micelles are formed. The complex viscosity decreases again in the turbid region, and then rises approximately six orders of magnitude above the water viscosity. This second rising is due to the formation of the liquid crystalline MLV phase.  相似文献   

17.
A cationic gemini surfactant, dodecanediyl-1,12-bis(dodecyldiethylammonium bromide) (C12C12C12(Et)), in aqueous solutions with varying NaBr concentration was studied by dynamic light scattering (DLS). As a comparison, its single-chained counterpart, dodecyl triethylammonium bromide (DTEAB), was also investigated under the same conditions. Similar to the case of a polyelectrolyte, C12C12C12(Et) underwent a typical "ordinary-to-extraordinary (o-e) transition" with decreasing salt concentration to zero. At higher salt concentration, a single relaxation mode, corresponding to the diffusion of regular micelles, was observed. While in the "extraordinary regime", DLS detected two characteristic relaxation modes with the values of the diffusion coefficient being different by at least 2 orders. The fast mode was consistent with the polyion-small ion coupled-mode theories, as well as the direct polyion-polyion repulsion interactions. Because the slow mode disappeared at elevated salt concentrations and generated negligible scattered intensity, we attributed it to multimacroion domains.  相似文献   

18.
The effect of alkali halides (NaBr, NaCl, KCl) on the interactions between the cationic gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and the anionic polyelectrolyte sodium polyacrylate (NaPAA) in aqueous solution has been investigated by fluorescence emission spectroscopy, UV transmittance, zeta potential, and transmission electron microscopy (TEM). With increased addition of NaBr, a counterbalancing salt effect on the critical aggregation concentration (CAC) is observed. At low concentrations, NaBr facilitates the formation of micelle-like structures between surfactant and polyelectrolyte and results in a smaller CAC. At high concentrations, NaBr screens the electrostatic attraction between surfactant and polyelectrolyte and leads to a larger CAC. Upon the formation of micelle-like structures at high surfactant concentrations, the addition of NaBr is favorable for larger aggregates. The microstructure detected by TEM show that a global structure is generally formed in the presence of NaBr. The interactions also depend on ion species. Compared to NaBr, the addition of NaCl or KCl yields a smaller CAC.  相似文献   

19.
Micellar-catalyzed alkaline hydrolysis of 2,4-dinitrochlorobenzene (DNCB) in the presence of a conventional cationic surfactant CTAB or a cationic gemini surfactant 1,2-ethane bis(dimethyldodecylammonium bromide) (12-2-12) were studied spectrophotometrically at 25 °C. It was found that both CTAB and 12-2-12 micelles accelerated the alkaline hydrolysis of DNCB, and the binding constant of the substrate to the micelle, KS, for 12-2-12 (KS = 310 M−1) was larger than that for CTAB (85 M−1), which suggested that DNCB molecules bound with gemini micelles more easily than with CTAB. However, the second-order rate constant in micellar pseudophase (kM = 1.22 × 10−3 s−1) for 12-2-12 was lower than kM for CTAB (4.01 × 10−3 s−1) because the substrate may enter the interior of the 12-2-12 micelles. It was found also that 12-2-12 had a similar catalysis mechanism to CTAB when the concentration of 12-2-12 was relatively low (ca. <5 mM). However, above this concentration, higher microviscosity and significant increases in aggregation number and micelle size with increased surfactant concentration may remarkably influence the hydrolysis reaction.  相似文献   

20.
The fluorescence behavior of pyrene solubilized in the hexadecyltrimethylammonium bromide aqueous micellar solution in the presence of adenosine 5'-monophosphate (AMP) and uridine 5'-monophosphate (UMP) was investigated. AMP and UMP were found to influence oppositely the fluorescence of micellized pyrene. UMP acts as quencher, while AMP acts as dequencher. Both effects saturate at high nucleotide concentration (about 40 mM). Dequenching of micellized pyrene fluorescence is induced also by addition of disodium hydrogen orthophosphate (Na 2HPO 4), while loading with sodium bromide (NaBr) quenches the fluorescence. Furthermore, in absence of micelles, pyrene fluorescence depends on the UMP, according to the Stern-Volmer relation, but is unaffected by AMP. Dynamic light scattering experiments showed that the size and shape of aggregates is not affected by different types of nucleotide loaded into the solution; thus, we conclude that the opposite photophysical effect exploited by AMP and UMP are uncorrelated to any change in micellar microstructure. The whole fluorescence data set was successfully accounted for by assuming that the anionic nucleotides compete with the surfactant counterion (bromide) for the surface of the micelle. Accordingly, substitution of bromide with the more effective quencher UMP results in a strong decrease of the pyrene fluorescence, while the substitution of bromide with the nonquencher AMP results in an increase in the pyrene fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号