首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A consistent set of group additive values ΔGAV° for 46 groups is derived, allowing the calculation of rate coefficients for hydrocarbon radical additions and β-scission reactions. A database of 51 rate coefficients based on CBS-QB3 calculations with corrections for hindered internal rotation was used as training set. The results of this computational method agree well with experimentally observed rate coefficients with a mean factor of deviation of 3, as benchmarked on a set of nine reactions. The temperature dependence on the resulting ΔGAV°s in the broad range of 300–1300 K is limited to ±4.5 kJ mol−1 on activation energies and to ±0.4 on logA (A: pre-exponential factor) for 90 % of the groups. Validation of the ΔGAV°s was performed for a test set of 13 reactions. In the absence of severe steric hindrance and resonance effects in the transition state, the rate coefficients predicted by group additivity are within a factor of 3 of the CBS-QB3 ab initio rate coefficients for more than 90 % of the reactions in the test set. It can thus be expected that in most cases the GA method performs even better than standard DFT calculations for which a deviation factor of 10 is generally considered to be acceptable.  相似文献   

2.
Reactivity of isobutane on zeolites: a first principles study   总被引:1,自引:0,他引:1  
In this work, ab initio and density functional theory methods are used to study isobutane protolytic cracking, primary hydrogen exchange, tertiary hydrogen exchange, and dehydrogenation reactions catalyzed by zeolites. The reactants, products, and transition-state structures are optimized at the B3LYP/6-31G* level, and the final energies are calculated using the CBS-QB3 composite energy method. The computed activation barriers are 52.3 kcal/mol for cracking, 29.4 kcal/mol for primary hydrogen exchange, 29.9 kcal/mol for tertiary hydrogen exchange, and 59.4 kcal/mol for dehydrogenation. The zeolite acidity effects on the reaction barriers are also investigated by changing the cluster terminal Si-H bond lengths. The analytical expressions between activation barriers and zeolite deprotonation energies for each reaction are proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts.  相似文献   

3.
An accurate thermochemical database for 28 halides of carbon, silicon, nitrogen, and phosphorus is presented. The database provides improved standard enthalpies of formation for several compounds of ecological importance (CH3F, CF2Cl2, CFCl3) together with enthalpies of other compounds which are not known due to experimental difficulties in measuring their enthalpies. We also present a comparison of the latest ab initio methods (CBS-QB3 and G3) which are used for thermochemical predictions. The comparison shows that the G3 method consistently underestimates delta H degree f by 1-2 kJ/mol (relative to CBS-QB3).  相似文献   

4.
Activation barriers and reaction energetics for the three main classes of 1,3-dipolar cycloadditions, including nine different reactions, were evaluated with the MPW1K and B3LYP density functional methods, MP2, and the multicomponent CBS-QB3 method. The CBS-QB3 values were used as standards for 1,3-dipolar cycloaddition activation barriers and reaction energetics, and the density functional theory (DFT) and MP2 methods were benchmarked against these values. The MPW1K/6-31G* method and basis set performs best for activation barriers, with a mean absolute deviation (MAD) value of 1.1 kcal/mol. The B3LYP/6-31G* method and basis set performs best for reaction enthalpies, with a MAD value of 2.4 kcal/mol, while the MPW1K method shows large errors for reaction energetics. The MP2 method gives the expected systematic underestimation of barriers. Concerted and nearly synchronous transition structures are predicted by all DFT and MP2 methods. Also reported are revised estimated 0 K experimental activation enthalpies for a standard set of hydrocarbon pericyclic reactions and updated comparisons to experiment for DFT, ab initio, and multicomponent methods. B3LYP and MPW1K methods with MAD values of 1.5 and 2.1 kcal/mol, respectively, fortuitously outperform the multicomponent CBS-QB3 method, which has a MAD value of 2.3. The MAD value of the O3LYP functional improves to 2.4 kcal/mol from the previously reported 3.0 kcal/mol.  相似文献   

5.
In this work, quantum chemical methods were used to study propane conversion reactions on zeolites; these reactions included protolytic cracking, primary hydrogen exchange, secondary hydrogen exchange, and dehydrogenation reactions. The reactants, products, and transition-state structures were optimized at the B3LYP/6-31G level and the energies were calculated with CBS-QB3, a complete basis set composite energy method. The computed activation barriers were 62.1 and 62.6 kcal/mol for protolytic cracking through two different transition states, 30.4 kcal/mol for primary hydrogen exchange, 29.8 kcal/mol for secondary hydrogen exchange, and 76.7 kcal/mol for dehydrogenation reactions. The effects of basis set for the geometry optimization and zeolite acidity on the reaction barriers were also investigated. Adding extra polarization and diffuse functions for the geometry optimization did not affect the activation barriers obtained with the composite energy method. The largest difference in calculated activation barriers is within 1 kcal/mol. Reaction activation barriers do change as zeolite acidity changes, however. Linear relationships were found between activation barriers and zeolite deprotonation energies. Analytical expressions for each reaction were proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts, as long as the deprotonation energies are first acquired.  相似文献   

6.
Alkyl radicals in atmospheric and combustion environments undergo a rapid association with molecular oxygen (3O2) to form an alkyl peroxy radical (ROO*). One important reaction of these peroxy radicals is the intramolecular H-shift (intramolecular abstraction) to form a hydroperoxide alkyl radical (R'*COOH), where the hydroperoxide alkyl radical may undergo chemical activation reaction with O2 and result in chain branching at moderate to low temperatures. The thermochemistry and trends in kinetic parameters for the hydrogen shift reactions from each carbon (4-8-member-ring TST's) in n-butyl and n-pentyl peroxy radicals (CCCCOO* and CCCCCOO*) are analyzed using density functional and ab initio calculation methods. Thermochemical properties, DeltafH degrees (298 K), C-H bond energies, S degrees (298 K), and Cp degrees (T) of saturated linear C4 and C5 aliphatic peroxides (ROOH), as well as the corresponding hydroperoxide alkyl radicals (R'*COOH), are determined. DeltafH degrees (298 K) are obtained from isodesmic reactions and the total energies of the CBS-QB3 and B3LYP computational methods. Contributions to the entropy and the heat capacity from translation, vibration, and external rotation are calculated using the rigid-rotor-harmonic-oscillator approximation based on the CBS-QB3 frequencies and structures. The results indicate that pre-exponential factors, A(T), decrease with the increase of the ring size (4-8-member-ring TS, H-atom included). The DeltaH for 4-, 5-, 6-, and 7-member rings in n-butyl (and n-pentyl) peroxy are 40.8 (40.8), 31.4 (31.5), 20.5 (20.0), 22.6-p (19.4) kcal mol(-1), respectively. The DeltaH for the 8-member ring in n-pentylperoxy is 23.8-p kcal mol(-1), All abstractions are from secondary (-CH2-) groups except those marked (-p), which are from primary sites. Enthalpy and barrier values from the B3LYP/6-311++G(2d,p) and BHandHLYP/6-311G(d,p) methods are compared with CBS-QB3 results. The B3LYP results show good agreement with the higher level CBS-QB3 calculation method; the BHandH barriers for the intramolecular peroxy H-shifts are not acceptable.  相似文献   

7.
A restricted-open-shell model chemistry based on the complete basis set-quadratic Becke3 (CBS-QB3) model is formulated and denoted ROCBS-QB3. As the name implies, this method uses spin-restricted wave functions, both for the direct calculations of the various components of the electronic energy and for extrapolating the correlation energy to the complete-basis-set limit. These modifications eliminate the need for empirical corrections that are incorporated in standard CBS-QB3 to compensate for spin contamination when spin-unrestricted wave functions are used. We employ an initial test set of 19 severely spin-contaminated species including doublet radicals and both singlet and triplet biradicals. The mean absolute deviation (MAD) from experiment for the new ROCBS-QB3 model (3.6+/-1.5 kJ mol(-1)) is slightly smaller than that of the standard unrestricted CBS-QB3 version (4.8+/-1.5 kJ mol(-1)) and substantially smaller than the MAD for the unrestricted CBS-QB3 before inclusion of the spin correction (16.1+/-1.5 kJ mol(-1)). However, when applied to calculate the heats of formation at 298 K for the moderately spin-contaminated radicals in the G2/97 test set, ROCBS-QB3 does not perform quite as well as the standard unrestricted CBS-QB3, with a MAD from experiment of 3.8+/-1.6 kJ mol(-1) (compared with 2.9+/-1.6 kJ mol(-1) for standard CBS-QB3). ROCBS-QB3 performs marginally better than standard CBS-QB3 for the G2/97 set of ionization energies with a MAD of 4.1+/-0.1 kJ mol(-1) (compared with 4.4+/-0.1 kJ mol(-1)) and electron affinities with a MAD of 3.9+/-0.2 kJ mol(-1) (compared with 4.3+/-0.2 kJ mol(-1)), but the differences in MAD values are comparable to the experimental uncertainties. Our overall conclusion is that ROCBS-QB3 eliminates the spin correction in standard CBS-QB3 with no loss in accuracy.  相似文献   

8.
用MP2方法,TZVPP基组以及基组重叠误差(BSSE)校正计算了氢分子与修饰在多孔芳香骨架(PAF)上的羧酸镁、羧酸钙官能团的相互作用,并建立了描述这一相互作用的分子力学力场.在此基础上用巨正则系综蒙特卡洛(GCMC)模拟预测了氢气在该种新型PAF材料上的吸附等温线.量子化学计算结果表明,每个羧酸镁、羧酸钙官能团分别可以提供13、14个氢分子吸附位点,与每个氢分子的平均结合能在8kJ·mol-1左右.通过比较不同温度和压力下材料的绝对吸附量和超额吸附量发现,在PAF骨架中引入羧酸镁、羧酸钙官能团可以显著提高材料的综合储氢性能,达到并超过了美国能源部提出的2015年储氢标准.同时该工作还揭示了氢吸附量与材料的表面积、空腔体积和分子作用强度间的复杂关系.  相似文献   

9.
Standard state enthalpies and free energies of formation can be computed with reasonable accuracy (usually within 4 and often 2 kJ/mol) using high level model chemistries. A comparison set of nearly 300 organic compounds ranging from 1 to 10 carbon atoms having a variety of functional groups for which enthalpy and free energy literature values are available has been examined using G2, G2MP2, G3, G3MP2, G3B3, G3MP2B3, CBS-QB3, and density functional (B3LYP/6-311+G(3df,2p)) model chemistries. G3 gives an average mean absolute deviation of 3.0 and 13.4 kJ/mol for the enthalpies and free energies, respectively, using the atomization method and 3.1 and 3.7 kJ/mol when bond separation reactions are employed. G3 and G3B3 are the most accurate overall; the related G3MP2 and G3MP2B3 are nearly as accurate and can compute larger molecules. CBS-QB3 was also found to be accurate but is more limited in the size of molecules that can be computed. The density functional energies were found to have large deviations from the literature values using either the atomization or the bond separation method. Regardless of the model employed, the free energies are increasingly underestimated by computation as the size of the molecule increases. A series of corrections applied to the aliphatic hydrocarbons is presented, which usually reduces the deviations to less than 4 kJ/mol regardless of the size of the molecule.  相似文献   

10.
Thermochemical and kinetic data were calculated at four cost-effective levels of theory for a set consisting of five hydrogen abstraction reactions between hydrocarbons for which experimental data are available. The selection of a reliable, yet cost-effective method to study this type of reactions for a broad range of applications was done on the basis of comparison with experimental data or with results obtained from computationally demanding high level of theory calculations. For this benchmark study two composite methods (CBS-QB3 and G3B3) and two density functional theory (DFT) methods, MPW1PW91/6-311G(2d,d,p) and BMK/6-311G(2d,d,p), were selected. All four methods succeeded well in describing the thermochemical properties of the five studied hydrogen abstraction reactions. High-level Weizmann-1 (W1) calculations indicated that CBS-QB3 succeeds in predicting the most accurate reaction barrier for the hydrogen abstraction of methane by methyl but tends to underestimate the reaction barriers for reactions where spin contamination is observed in the transition state. Experimental rate coefficients were most accurately predicted with CBS-QB3. Therefore, CBS-QB3 was selected to investigate the influence of both the 1D hindered internal rotor treatment about the forming bond (1D-HR) and tunneling on the rate coefficients for a set of 21 hydrogen abstraction reactions. Three zero curvature tunneling (ZCT) methods were evaluated (Wigner, Skodje & Truhlar, Eckart). As the computationally more demanding centrifugal dominant small curvature semiclassical (CD-SCS) tunneling method did not yield significantly better agreement with experiment compared to the ZCT methods, CD-SCS tunneling contributions were only assessed for the hydrogen abstractions by methyl from methane and ethane. The best agreement with experimental rate coefficients was found when Eckart tunneling and 1D-HR corrections were applied. A mean deviation of a factor 6 on the rate coefficients is found for the complete set of 21 reactions at temperatures ranging from 298 to 1000 K. Tunneling corrections play a critical role in obtaining accurate rate coefficients, especially at lower temperatures, whereas the hindered rotor treatment only improves the agreement with experiment in the high-temperature range.  相似文献   

11.
The complete basis set method CBS-QB3 has been used to study the thermochemistry and kinetics of the esters ethyl propanoate (EP) and methyl butanoate (MB) to evaluate initiation reactions and intermediate products from unimolecular decomposition reactions. Using isodesmic and isogeitonic equations and atomization energies, we have estimated chemically accurate enthalpies of formation and bond dissociation energies for the esters and species derived from them. In addition it is shown that controversial literature values may be resolved by adopting, for the acetate radical, CH3C(O)O(.-), DeltaH(o)(f)298.15K) = -197.8 kJ mol(-1) and for the trans-hydrocarboxyl radical, C(.-)(O)OH, -181.6 +/- 2.9 kJ mol(-1). For EP, the lowest energy decomposition path encounters an energy barrier of approximately 210 kJ mol(-1) (approximately 50 kcal mol(-1)), which proceeds through a six-membered ring transition state (retro-ene reaction) via transfer of the primary methyl H atom from the ethyl group to the carbonyl oxygen, while cleaving the carbon-ether oxygen to form ethene and propanoic acid. On the other hand, the lowest energy path for MB has a barrier of approximately 285 kJ mol(-1), producing ethene. Other routes leading to the formation of aldehydes, alcohols, ketene, and propene are also discussed. Most of these intramolecular hydrogen transfers have energy barriers lower than that needed for homolytic bond fission (the lowest of which is 353 kJ mol(-1) for the C(alpha)-C(beta) bond in MB). Propene formation is a much higher energy demanding process, 402 kJ mol(-1), and it should be competitive with some C-C, C-O, and C-H bond cleavage processes.  相似文献   

12.
The oxidation of formic and acetic acids with hydroxyl radicals was studied as a model for the oxidation of larger carboxylic acids using first principles calculations. For formic acid, the CBS-QB3 activation barriers of 14.1 and 12.4 kJ/mol for the acid and for the formyl channel, respectively, are within 3 kJ/mol of benchmark W1U values. Tunneling significantly enhances the rate coefficient for the acid channel and is responsible for the dominance of the acid channel at 298 K. At 298 K, tunneling correction factors of 339 and 2.0 were calculated for the acid and the formyl channel using the small-curvature tunneling method and the CBS-QB3 potential energy surface. The Wigner, Eckart, and zero-curvature tunneling methods severely underestimate the importance of tunneling for the acid channel. The resulting reaction rate coefficient of 0.98 x 10(5) m(3)/(mol x s) at 298 K is within a factor 2-3 of experimental values. For acetic acid, an activation barrier of 11.0 kJ/mol and a tunneling correction factor of 199 were calculated for the acid channel. Two mechanisms compete for hydrogen abstraction at the methyl group, with activation barriers of 11.9 and 12.5 kJ/mol and tunneling correction factors of 9.1 and 4.1 at 298 K. The resulting rate coefficient of 1.2 x 10(5) m(3)/(mol x s) at 298 K and branching ratio of 94% compare well with experimental data.  相似文献   

13.
The reaction of triplet methylene with methanol is a key process in alcohol combustion but surprisingly this reaction has never been studied. The reaction mechanism is investigated by using various high-level ab initio methods, including the complete basis set extrapolation (CBS-QB3 and CBS-APNO), the latest Gaussian-n composite method (G4), and the Weizmann-1 method (W1U). A total of five product channels and six transition states are found. The dominant mechanism is direct hydrogen abstraction, and the major product channel is CH(3) + CH(3)O, involving a weak prereactive complex and a 7.4 kcal/mol barrier. The other hydrogen abstraction channel, CH(3) + CH(2)OH, is less important even though it is more exothermic and involves a similar barrier height. The rate coefficients are predicted in the temperature range 200-3000 K. The tunneling effect and the hindered internal rotational freedoms play a key role in the reaction. Moreover, the reaction shows significant kinetic isotope effect.  相似文献   

14.
Symmetric and nonsymmetric hydrogen abstraction reactions are studied using state-of-the-art ab initio electronic structure methods. Second-order M?ller-Plesset perturbation theory (MP2) and the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] methods with large correlation consistent basis sets (cc-pVXZ, where X = D,T,Q) are used in determining the transition-state geometries, activation barriers, and thermodynamic properties of several representative hydrogen abstraction reactions. The importance of basis set, electron correlation, and choice of zeroth-order reference wave function in the accurate prediction of activation barriers and reaction enthalpies are also investigated. The ethynyl radical (*CCH), which has a very high affinity for hydrogen atoms, is studied as a prototype hydrogen abstraction agent. Our high-level quantum mechanical computations indicate that hydrogen abstraction using the ethynyl radical has an activation energy of less than 3 kcal mol(-1) for hydrogens bonded to an sp(2) or sp(3) carbon. These low activation barriers further corroborate previous studies suggesting that ethynyl-type radicals would make good tooltips for abstracting hydrogens from diamondoid surfaces during mechanosynthesis. Modeling the diamond C(111) surface with isobutane and treating the ethynyl radical as a tooltip, hydrogen abstraction in this reaction is predicted to be barrierless.  相似文献   

15.
One of the requisites for the development of detailed reaction networks is the availability of accurate kinetic data. Group additivity based models linking the Arrhenius parameters to structural characteristics of the transition state have proven to be a valuable tool to obtain those data. In this work, group additivity values are presented to allow a broad range of C H and S H hydrogen abstraction reactions by S radicals to be modeled. Rate coefficients in the temperature range from 300 to 1500 K are obtained by using the CBS-QB3 method in the high-pressure limit and are corrected for tunneling and anharmonicity of rotation about the transitional bond. A total of 149 reactions are studied. From these reactions, a total of 52 group additivity values and 35 resonance corrections are derived. The general applicability of the group additivity method is demonstrated for a test set containing 25 reactions. At 300 K, rate coefficients are on average reproduced within a factor of 2.8. The mean absolute deviations on the Arrhenius parameters are 2 kJ mol−1 for the activation energy and 0.38 for log A in which A is the pre-exponential factor.  相似文献   

16.
Hydrogen abstraction reactions involving organosulfur compounds play an important role in many industrial, biological and atmospheric processes. Despite their chemical relevance, little is known about their kinetics. In this work a group additivity model is developed that allows predicting the Arrhenius parameters for abstraction reactions of α hydrogen atoms from thiols, alkyl sulfides, alkyl disulfides and thiocarbonyl compounds by carbon-centered radicals at temperatures ranging from 300 to 1500 K. Rate coefficients for 102 hydrogen abstractions were obtained using conventional transition state theory within the high-pressure limit. Electronic barriers were calculated using the CBS-QB3 method and the rate coefficients were corrected for tunneling and hindered rotation about the transitional bond. Group additivity values for 46 groups are determined. To account for resonance and hyperconjugative stabilization in the transition state, 8 resonance corrections were fitted to a set of 32 reactions. The developed group additivity scheme was validated using a test set containing an additional 30 reactions. The group additivity scheme succeeds in reproducing the rate coefficients on average within a factor of 2.4 at 300 K and 1.4 at 1000 K. Mean absolute deviations of the Arrhenius parameters amount to, respectively, 2.5 kJ mol(-1) for E(a) and 0.13 for log A, both at 300 and 1000 K. This work hence illustrates that the recently developed group additivity methods for Arrhenius parameters extrapolate successfully to hetero-element containing compounds.  相似文献   

17.
18.
A complete and consistent set of 95 Benson group additive values (GAV) for the standard enthalpy of formation of hydrocarbons and hydrocarbon radicals at 298 K and 1 bar is derived from an extensive and accurate database of 233 ab initio standard enthalpies of formation, calculated at the CBS-QB3 level of theory. The accuracy of the database was further improved by adding newly determined bond additive corrections (BAC) to the CBS-QB3 enthalpies. The mean absolute deviation (MAD) for a training set of 51 hydrocarbons is better than 2 kJ mol(-1). GAVs for 16 hydrocarbon groups, i.e., C(C(d))(3)(C), C-(C(d))(4), C-(C(t))(C(d))(C)(2), C-(C(t))(C(d))(2)(C), C-(C(t))(C(d))(3), C-(C(t))(2)(C)(2), C-(C(t))(2)(C(d))(C), C-(C(t))(2)(C(d))(2), C-(C(t))(3)(C), C-(C(t))(3)(C(d)), C-(C(t))(4), C-(C(b))(C(d))(C)(H), C-(C(b))(C(t))(H)(2), C-(C(b))(C(t))(C)(H), C-(C(b))(C(t))(C)(2), C(d)-(C(b))(C(t)), for 25 hydrocarbon radical groups, and several ring strain corrections (RSC) are determined for the first time. The new parameters significantly extend the applicability of Benson's group additivity method. The extensive database allowed an evaluation of previously proposed methods to account for non-next-nearest neighbor interactions (NNI). Here, a novel consistent scheme is proposed to account for NNIs in radicals. In addition, hydrogen bond increments (HBI) are determined for the calculation of radical standard enthalpies of formation. In particular for resonance stabilized radicals, the HBI method provides an improvement over Benson's group additivity method.  相似文献   

19.
Many different degradation reactions of chlorinated hydrocarbons are possible in natural groundwaters. In order to identify which degradation reactions are important, a large number of possible reaction pathways must be sorted out. Recent advances in ab initio electronic structure methods have the potential to help identify relevant environmental degradation reactions by characterizing the thermodynamic properties of all relevant contaminant species and intermediates for which experimental data are usually not available, as well as provide activation energies for relevant pathways. In this paper, strategies based on ab initio electronic structure methods for estimating thermochemical and kinetic properties of reactions with chlorinated hydrocarbons are presented. Particular emphasis is placed on strategies that are computationally fast and can be used for large organochlorine compounds such as 4,4′-DDT  相似文献   

20.
Hydrogen abstraction from 2-aminoethanol by the 5'-deoxyadenosyl radical, which is formed upon Co--C bond homolysis in coenzyme B(12), was investigated by theoretical means with employment of the DFT (B3LYP) and ab initio (MP2) approaches. As a model system for the 5'-deoxyadenosyl moiety the computationally less demanding 1,5-dideoxyribose was employed; two conformers, which differ in ring conformation (C2- and C3-endo), were considered. If hydrogen is abstracted from "free" substrate by the C2-endo conformer of the 1,5-dideoxyribose-5-yl radical, the activation enthalpy is 16.7 kcal mol(-1); with the C3-endo counterpart, the value is 17.3 kcal mol(-1). These energetic requirements are slightly above the activation enthalpy limit (15 kcal mol(-1)) determined experimentally for the rate-determining step of the sequence, that is, hydrogen delivery from 5'-deoxyadenosine to the product radical. The activation enthalpy is lower when the substrate interacts with at least one amino acid from the active site. According to the computations, when a His model system partially protonates the substrate the activation enthalpy is 4.5 kcal mol(-1) for the C3-endo conformer and 5.8 kcal mol(-1) for the C2-endo counterpart. As hydrogen abstraction from the fully as well as the partially protonated substrate is preceded by the formation of quite stable encounter complexes, the actual activation barriers are around 13-15 kcal mol(-1). A synergistic interaction of 2-aminoethanol with two amino acids where His partially protonates the NH(2) group and Asp partially deprotonates the OH group of the substrate results in an activation enthalpy of 12.4 kcal mol(-1) for the C3-endo conformer and 13.2 kcal mol(-1) for the C2-endo counterpart. However, if encounter complexes exist in the active site, the actual activation barriers are much higher (>25 kcal mol(-1)) than that reported for the rate-determining step. These findings together with previous computations suggest that the energetics of the initial hydrogen abstraction decrease with an interaction of the substrate with only a protonating auxiliary, but for the rearrangement of the radical the synergistic effects of two auxiliaries are essential to pull the barrier below the limit of 15 kcal mol(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号