首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting.  相似文献   

3.
郭永艳  卢良旺  谢婷  张璐  田雁飞  杨萍 《化学通报》2022,85(12):1419-1424
银簇是一类粒径为1-2 nm的银纳米材料,其除具有特殊的光、电、磁及催化等性能,还具有低毒、强荧光、生物相容性等特殊的物理、化学等特性。因此被广泛应用于生物检测、环境监测等领域。以银簇为研究对象,对银簇的制备、银簇的性能和银簇的应用进行综述。总结了荧光银簇的制备、性能和应用方面的最新研究进展。  相似文献   

4.
Uniform nanowires of silver and gold inside the channels of MCM-41 were prepared by controlled reduction of their respective metal salts with sodium borohydride (NaBH4). Presence of nanowires of silver and gold in MCM-41 were confirmed by high angle X-ray diffraction (XRD) data (peaks between 2ϑ = 30 − 60°) and transmission electron microscopy (TEM) confirmed the diameter of the nanowires. Diameter of nanowires is found to be ∼ 2.8 nm which is coincident with channel diameter of MCM-41. Optical properties of these heterostructured materials Ag-MCM-41 and Au-MCM-41 reveals the presence of surface plasmon absorption peaks of silver and gold respectively, and the shift in the absorption bands are associated to agglomeration of clusters inside the channels. Room temperature photoluminescence spectra exhibits interesting optical properties as observed for direct band gap semiconductors. Non-linear optical properties (NLO) corresponding to second harmonic generation (SHG) values were also recorded for self supported films of these heterostructured materials. Enhanced optical non-linearity was found to be arising from a corresponding increase of local field near the surface plasmon resonance. Further enhancement in SHG was found with poling due to an induction of orientation order.  相似文献   

5.
In surface science, much effort has gone into obtaining a deeper understanding of the size-selectivity of nanocatalysts. In this article, electronic and chemical properties of various model catalysts consisting of Au are reported. Au supported by oxide surfaces becomes inert towards chemisorption and oxidation as the particle size became smaller than a critical size (2-3 nm). The inertness of these small Au nanoparticles is due to the electron-deficient nature of smaller Au nanoparticles, which is a result of metal-substrate charge transfer. Properties of Au clusters smaller than ~20 atoms were shown to be non-scalable, i.e., every atom can drastically change the chemical properties of the clusters. Moreover, clusters with the same size can show dissimilar properties on various substrates. These recent endeavours show that the activity of a catalyst can be tuned by varying the substrate or by varying the cluster size on an atom-by-atom basis.  相似文献   

6.
The optical absorption of small mass selected Agn-clusters (n=8–39) embedded in solid Ar, Kr and Xe has been measured. Strong absorption has been found between 3 and 4.5 eV. The absorption spectra show 1 to 3 major peaks depending on the cluster size. The width of these peaks is smaller than in gas phase photodepletion experiments of silver ions, most likely due to the low and well defined temperature of the clusters in the matrix. The results are compared to a simple model based on a Drude metal, taking into account the spillout of the electrons and allowing for a deviation of the cluster from a spherical shape. Absorption cross sections scale with the number of valence electrons.  相似文献   

7.
The effect of aggregation on the optical properties of nanometer-sized particles is studied. It is shown that for small noble metal clusters as well as for pigments of Fe2O3, TiN, or ZrN, the aggregation leads to changes in the color of the colloidal systems which are caused by electromagnetic coupling among the clusters in the aggregates. The model of interacting particles is shown to be helpful also for interpretation of optical properties of organic dyes with incorporated metal clusters and for interpretation of the reflectance of magnetooptical cluster systems. For soot particles it is shown that scattering and absorption are enhanced over the whole visible spectral region compared to isolated carbonaceous clusters. Finally, it is shown that the model of interacting clusters can also be applied for data interpretation in scanning near-field optical microscopy.  相似文献   

8.
We report on the optical properties (absorption, Raman response) of thin and ultrathin phthalocyanine and amorphous silicon films with incorporated noble metal clusters. The metal clusters cause the typical absorption features originating from their surface plasmon resonance. In ultrathin films, due to the spatially close interface, the plasmon absorption may be displaced from its resonance frequency in the bulk, and its average position may be controlled by the average thickness of the ultrathin optical film. For example, we observe a shift of the plasmon resonance of silver clusters in amorphous silicon films (on fused silica) from 440 nm to 740 nm, when the silicon thickness increases from zero up to 9 nm. The deposition experiments are accompanied by investigations of the film structure, particularly in order to estimate the silver cluster diameter, which is around 3 nm or less.  相似文献   

9.
Au55 cluster compounds are investigated by optical spectroscopy and TEM. The optical spectra appear to be rather structureless, neither showing a collective excitation resonance nor exhibiting distinct absorption bands known from lower nuclearity clusters. We discuss changes of the electronic properties compared to larger Au clusters affecting both, 6sp electrons and5d-6sp interband transitions, the cluster-ligand-interaction being considered as a charge transfer process. We additionally report on a low temperature instability of the cluster compound, which results in changed optical extinction spectra. A characteristic absorption feature at λ=400 nm is attributed to small, ligand-free Au cluster fragments.  相似文献   

10.
The surface plasmon absorption band of small Ag particles (diameter≤100 Å) in the gasphase as well as for clusters embedded in noble gas matrices is known to shift to higher energies and to broaden with decreasing diameter. This size effect depends sensitively on the microscopic surface properties of the clusters, which can be influenced by the interaction with the embedding matrix. Previous experiments with silver clusters in the size range 20 Å≤D≤100 Å proved that for SiO2 and CO the matrix influence is strong enough to supersede the intrinsic size effect as observed in the noble gas matrices. The investigation of the influence of a CO matrix on smaller clusters with D≤20 Å reveals a novel feature: the position as well as the width of the surface plasmon absorption band become independent of the cluster size.  相似文献   

11.
Structural and optical properties of nonstoichiometric LinO and NanO (n = 3, 4) clusters containing one and two excess electrons are studied using ab-initio methods accounting for electron correlation. We show that calculated absorption patterns are excellent fingerprints of structural and bonding properties. The optical response of Li4O and Na4O clusters with the most stable tetrahedral type structures is characterized by a common feature, that is the appearance of a dominant intense transition in infrared regime although excess of electrons are not localized, as it is the case for small alkali-halide clusters, with cuboid corner vacancy (surface F-center in finite systems).  相似文献   

12.
Polydiacetylene (PDA) materials are used as a platform for detection of biological analytes such as microorganisms, viruses and proteins. The environmentally responsive chromic and emissive properties of the polymer, combined with self-assembled material formats, make these materials particularly attractive for biosensing applications. A variety of approaches have been used in developing these materials and demonstrating their potential for biological detection. In this feature article we describe different PDA material formats, discuss the optical properties that are the basis for signal generation, and review the use of PDA for biosensing.  相似文献   

13.
The vertical transitions of Cu atoms, dimers, and tetramers deposited on the MgO surface have been investigated by means of ab initio calculations based either on complete active space second-order perturbation theory or on time-dependent density functional theory. Three adsorption sites have been considered as representative of the complexity of the MgO surface: regular sites at flat (100) terraces, extended defects such as monoatomic steps, and point defects such as neutral oxygen vacancies (F or color centers). The optical properties of the supported Cu clusters have been compared with those of the corresponding gas-phase units. Upon deposition a substantial modification of the energy levels of the supported cluster is induced by the Pauli repulsion with the substrate. This causes shifts in the optical transitions going from free to supported clusters. The changes in cluster geometry induced by the substrate have a much smaller effect on the optical absorption bands. On F centers the presence of filled impurity levels in the band gap of MgO results in a strong mixing with the empty levels of the Cu atoms and clusters with consequent deep changes in the optical properties of the color centers. The results allow to interpret electron energy loss spectra of Cu atoms deposited on MgO thin films.  相似文献   

14.
The changes in nature and order of the excited electronic states of the photosensitizer [Ir(ppy)(2)(bpy)](+) upon binding to small silver clusters, Ag(n) (n = 1-6), were studied theoretically using the linear response TDDFT method with the range-separated LC-BLYP functional. Binding energies and localization of HOMO and LUMO orbitals are found to oscillate with the number of silver atoms. Special emphasis is put on the discussion of long-range charge transfer transitions between the photosensitizer and the silver cluster. The energies of these transitions were found to be only slightly dependent on the relative orientations of both fragments, but strongly dependent on the intermolecular distance. The absorption spectrum of the combined system does not show a systematic trend with respect to cluster size, but it is strongly modified by the charge transfer transitions. Possible photophysical processes of the systems containing larger clusters are discussed.  相似文献   

15.
The interband transition contributions to the optical properties of silver nanoparticles in fluoropolymer matrices are investigated. For the materials in this study, nanoparticle synthesis within the existing polymer matrix is accomplished using an infusion process that consists of diffusing an organometallic precursor gas into the free volume of the fluoropolymer and decomposing the precursor followed by metal nanoparticle nucleation and growth. The resulting polymer matrix nanocomposite has optical properties that are dominated by the response of the nanoparticles owing to the broadbanded transparency of the fluoropolymer matrix. The optical properties of these composites are compared to Maxwell-Garnett and Mie theory with results indicating that interband transitions excited in the silver nanoparticles affect the optical absorption over a range of frequencies including the surface plasmon resonance. It is shown that calculations of the optical absorption spectrum using published data for the silver dielectric function do not accurately describe the measured material response and that a classical model for bound and free electron behavior can best be used to represent the dielectric function of silver.  相似文献   

16.
在本研究中,使用(iPrC6H4SAg)n作为合成银硫纳米簇合物的前驱体。当存在辅助的双膦配体1, 3-双(二苯基膦)丙烷(dppp)及可溶性银盐(CF3SO3Ag),在超声合成条件下,获得了一例二十五核银硫簇合物Ag25,并借助X射线单晶衍射技术确定相应的分子结构。该银硫簇合物具有夹心三明治的骨架结构:分别由两个结构相似的圆柱体共享一个七核纯银簇所构成的金属簇平面。固态紫外可见漫反射光谱测试表明该簇合物的能级带隙为2.5 eV,属于半导体材料的范畴。固态发光测试显示,该簇合物在室温下发射绿光。  相似文献   

17.
We use surface second harmonic generation spectroscopy to study the oxidation of supported, size-selected silver clusters under ultra-high vacuum conditions. The oxidation reaction of small silver clusters between \(Ag_{9}\) and \(Ag_{55}\) is monitored by means of their localized surface plasmon resonance. We observe a rapid decline of the SH-intensity, as soon as cluster samples are exposed to an oxygen partial pressure of \(5 \cdot 10^{-6}\) mbar, which is attributed to the formation of silver–oxygen-bonds. The evolution of the SH-intensity under exposure to oxygen shows a double-exponential character for all investigated cluster sizes. Since the oxidation of single crystalline silver surfaces follow single-exponential Langmuir-kinetics, the two independent pathways of SH-intensity loss are attributed to a surface- and an interface-oxidation of supported clusters, respectiveley. For small cluster sizes, a complete loss of the SH intensity is obtained, which suggests the complete oxidation of the clusters. For larger clusters a plasmonic resonance is still observed after oxidation, indicating a residual free-electron density.  相似文献   

18.
The quantized energy levels of electrons in supported nanometer-size Au clusters have been resolved at room temperature using field emission techniques. By studying the time dependence of the electron emission current from an individual supported cluster, information about the structural stability of the cluster can also be obtained. Studies show abrupt jumps between different emission rates that are revisited as time progresses. This phenomenon can be attributed to a rearrangement of the cluster structure and/or orientation on the substrate and provides new evidence of multiple ‘isomeric’ structures for small clusters of metallic atoms.  相似文献   

19.
In this paper we describe a method to calculate the optical properties of deterministic fractal clusters. Our method takes advantage of the fact that deterministic fractals can be constructed by an iterative rule. We calculate first the optical properties of a small cluster that describes one stage in the iteration. The optical properties of this cluster are then assigned to an “effective particle”. A small number of these produce the next stage in the fractal construction. We performed the calculations for metallic particles with dielectric functions described by the hydrodynamic model. Results in the dipolar and quadrupolar approximations for a cluster at the second fractal stage shows the double extinction peak often seen in experimental studies.  相似文献   

20.
We use surface second harmonic generation spectroscopy (s-SHG) to study the oxidation of supported, size-selected silver clusters under ultra-high vacuum conditions. The oxidation reaction of small silver clusters between \(\hbox {Ag}_{9}\) and \(\hbox {Ag}_{55}\) is monitored by means of their localized surface plasmon resonance. We observe a rapid decline of the SH-intensity, as soon as cluster samples are exposed to an oxygen partial pressure of \(5 \times 10^{-6}\) mbar, which is attributed to the formation of silver–oxygen-bonds. The evolution of the SH-intensity under exposure to oxygen shows a double-exponential character for all investigated cluster sizes. Since the oxidation of single crystalline silver surfaces follow single-exponential Langmuir-kinetics, the two independent pathways of SH-intensity loss are attributed to a surface- and an interface-oxidation of supported clusters, respectiveley. For small cluster sizes, a complete loss of the SH intensity is obtained, which suggests the complete oxidation of the clusters. For larger clusters a plasmonic resonance is still observed after oxidation, indicating a residual free-electron density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号