首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
The acidity of mesoporous MoO(x)/ZrO2 and WO(x)/ZrO2 materials was studied in detail by multinuclear solid-state NMR techniques as well as DFT quantum chemical calculations. The 1H MAS NMR experiments clearly revealed the presence of two different types of strong Br?nsted acid sites on both MoO(x)/ZrO2 and WO(x)/ZrO2 mesoporous materials, which were able to prontonate adsorbed pyrine-d5 (resulting in 1H NMR signals at chemical shifts in the range 16-19 ppm) as well as adsorbed trimethylphosphine (giving rise to 31P NMR signal at ca. 0 ppm). The 13C NMR of adsorbed 2-(13)C-acetone indicated that the average Br?nsted acid strength of the two mesoporous materials was stronger than that of zeolite HZSM-5 but still weaker than that of 100% H2SO4, which was in good agreement with theoretical predictions. The quantum chemical calculations revealed the detailed structures of the two distinct types of Br?nsted acid sites formed on the mesoporous MoO(x)/ZrO2 and WO(x)/ZrO2. The existence of both monomer and oligomer Mo (or W) species containing a Mo-OH-Zr (or W-OH-Zr) bridging OH group was confirmed with the former having an acid strength close to zeolite HZSM-5, with the latter having an acid strength similar to sulfated zirconia. On the basis of our NMR experimental and theoretical calculation results, a possible mechanism was proposed for the formation of acid sites on these mesoporous materials.  相似文献   

2.
The basic chemical structure and orientation of ethylene chemisorbed on Si(114)-(2 x 1) at submonolayer coverage is characterized in ultrahigh vacuum using transmission Fourier transform infrared (FTIR) spectroscopy. The spectra are consistent with di-sigma bonding of ethylene to the surface with a preferential molecular orientation over macroscopic lengths. These results are supported by density functional theory (DFT) calculations of vibrational frequencies for optimized ethylene-Si(114) structures occupying the dimer and rebonded atom surface sites. A detailed analysis of the strong angular and polarization dependence of the C-H stretching mode intensities is also consistent with the adsorption structures identified by DFT, indicating that ethylene chemisorbs with the C-C bond axis parallel to the structural rows oriented along the [10] direction on the Si(114)-(2 x 1) surface. The results indicate that the unique structure of this surface makes it an excellent template for elucidating relationships between surface structure and organic reaction mechanisms on silicon.  相似文献   

3.
Synthetic conditions are determined for the variable-composition phase Na1?x Ni1?x Cr1+x (MoO4)3 (0 ≤ x ≤ 0.4) with a NASICON structure. The unit cell parameters of this phase are derived from X-ray powder diffraction data, and the phase is characterized by IR and Raman spectroscopy.  相似文献   

4.
We have investigated surface CO oxidation on "inverse catalysts" composed of SnO(x) nanostructures supported on Pt(111) using X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (LEISS) and temperature-programmed desorption (TPD). Nanostructures of SnO(x) were prepared by depositing Sn on Pt(111) pre-covered by NO(2) layers at low temperatures. XPS data show that the SnO(x) nanoparticles are highly reduced with Sn(II)O being the dominant oxide species, but the relative concentration of Sn(II) in the SnO(x) nanoparticles decreases with increasing Sn coverage. We find that the most active SnO(x)/Pt(111) surface for CO oxidation has smallest SnO(x) coverage. Increasing the surface coverage of SnO(x) reduces CO oxidation activity and eventually suppresses it altogether. The study suggests that reduced Sn(II)O, rather than Sn(IV)O(2), is responsible for surface CO oxidation. The occurrence of a non-CO oxidation reaction path involving reduced Sn(II)O species at higher SnO(x) coverages accounts for the decreased CO oxidation activity. From these results, we conclude that the efficacy of CO oxidation is strongly dependent on the availability of reduced tin oxide sites at the Pt-SnO(x) interface, as well as unique chemical properties of the SnO(x) nanoparticles.  相似文献   

5.
The surfaces of the magnetic data storage hard disks used in computers are coated with a thin film of amorphous carbon and a layer of perfluoropolyalkyl ether (PFPE) lubricant. Both protect the surface of the magnetic layer from contact with the read-write head flying over the disk surface. Although the most commonly used carbon films are amorphous hydrogenated carbon, a-CH(x), it has been suggested that the thermal properties of amorphous fluorinated carbon films, a-CF(x), might be superior. This work has probed the interaction of small fluorinated ethers and alcohols with the surfaces of a-CF(x) films to understand the effects of carbon film fluorination on the interaction of the lubricant with its surface. Temperature-programmed desorption was used to measure the desorption energies of small fluorocarbons from the a-CF(x) surface and to compare their desorption energies with those from the surfaces of a-CH(x) films. These measurements reveal that, similarly to a-CH(x) films, a-CF(x) films expose a heterogeneous surface on which fluorocarbons adsorb at sites with a range of binding energies. The fluorocarbon ethers all have lower heats of adsorption than their hydrocarbon counterparts, suggesting that the ethers adsorb by donation of electron density from the oxygen lone-pair electrons to sites on the surface. Fluorinated alcohols have roughly the same heats of adsorption as their hydrocarbon counterparts. There is little significant difference between the interactions of fluorinated ethers (or alcohols) with the surfaces of either a-CF(x) or a-CH(x) films.  相似文献   

6.
The structures of lithium iron dimolybdate, LiFe(MoO4)2, and lithium gallium dimolybdate, LiGa(MoO4)2, are shown to be isomorphous with each other. Their structures consist of segregated layers of LiO6 bicapped trigonal bipyramids and Fe(Ga)O6 octahedra separated and linked by layers of isolated MoO4 tetrahedra. The redetermined structure of trilithium gallium trimolybdate, Li3Ga(MoO4)3, shows substitional disorder on the Li/Ga site and consists of perpendicular chains of LiO6 trigonal prisms and two types of differently linked Li/GaO6 octahedra.  相似文献   

7.
8.
XRD, LRS, TPR and in situ NH(3) adsorption FT-IR were used to investigate the dispersion state of the copper oxide and molybdena species of MoO(3)/CeO(2) and CuO/MoO(3)/CeO(2) catalysts as well as their surface acidity. The results showed that the molybdena monolayer modification promoted the dispersion of CuO due to the formation of new tetrahedral vacancies. Meanwhile, CuO changed the structure of molybdenum species and then influenced the surface acidity of the samples. A detail discussion about the possible model of the surface structure of the catalyst was presented. In addition, combining with the in situ NH(3) adsorption FT-IR, the relationships between the activities for 'NO + NH(3) + O(2)' reaction and surface acid properties (Br?nsted and Lewis acid sites) of the catalysts were discussed.  相似文献   

9.
Adsorption of NO on Pt(110)-(1 x 2) and (1 x 1) surfaces has been investigated by density functional theory (DFT) method (periodic DMol(3)) with full geometry optimization and without symmetry restriction. Adsorption energies, structures, and N-O stretching vibrational frequencies of NO are studied by considering multiple possible adsorption sites and comparing with the experimental data. Adsorption is strongly dependent on both coverage and surface phase. The assignment of adsorption sites has been carried out with precise calculation of vibrational frequencies for NO on various sites. We clearly show the NO site switching on both of the surfaces as found in the experiments: at low coverages, bridge species is formed on the surface, and at high coverages, NO switches to atop sites.  相似文献   

10.
Structure simulation is performed for molybdophates of variable composition A1?x Zr2(PO4)3?x (MoO4)x, where A is Na (0≤x≤0.6), K (0≤x≤0.6), K (0≤x≤0.3), Rb (0≤x≤0.2), or Cs (0≤x≤0.1), using the minimization of the interatomic interaction energy; these molybdophosphates crystallize in the NaZr2(PO4)3 (NZP) structure type. The results of the computer-assisted structure simulation are verified by the synthesis of the molybdophosphates and their characterization by X-ray powder diffraction and IR spectroscopy. The crystallization field of the NZP molybdophosphate shrinks as the alkali cation size increases. The key factors that govern the stability of the NZP structure in alkali zirconium molybdophosphates are determined.  相似文献   

11.
We report density functional theory calculations using the Adaptive Coordinate Real-space Electronic Structure (ACRES) method of the terminal oxygen vacancy on the (010) surface of MoO3, within a (2 x 2) ordered array of vacancies on the surface. Analysis of the electronic structure of this surface shows that there are unoccupied dangling d(xz) and d(z)2 orbitals perpendicular to the surface that are created by the removal of terminal oxygen. The Mo-oxygen bonds surrounding the vacancy contract; however, the overall morphology of the surface is not drastically distorted. The vacancies alter the chemical character of the surface, as shown by studies of hydrogen and methyl binding. On both the "perfect" and vacancy surfaces, hydrogen was most strongly adsorbed over the terminal oxygen and most weakly bound over the symmetric bridging oxygen. Hydrogen is bound over the Mo atom, with a slightly smaller binding energy than hydrogen over the asymmetric bridging oxygen. The most favorable binding site for methyl on the vacancy surface is over the Mo atom exposed by removal of a terminal oxygen, whereas methyl bound to terminal oxygen is most stable on the perfect surface. There is no local minimum for adsorption over the symmetric bridging oxygen; instead, a methyl placed over this site moves toward the terminal oxygen vacancy. Analysis of the bonding shows that methyl is bound more strongly than hydrogen over the Mo atom because the C 2p orbital has better overlap with the Mo d(z)2 orbital than the hydrogen 1s. In addition, the steric repulsion observed for methyl over the perfect MoO3(010) surface is more easily relieved with the presence of the terminal oxygen vacancy.  相似文献   

12.
The formation of PtRu surface alloys by deposition of submonolayer Pt films on a Ru(0001) substrate and subsequent annealing to about 1350 K and the distribution of the Pt atoms in the surface layer were investigated by scanning tunneling microscopy. Quantitative statistical analysis reveals (i) negligible losses of Pt into subsurface regions up to coverages close below 1 monolayer, (ii) a homogeneous distribution of the Pt atoms over the surface, and (iii) the absence of a distinct long-range or short-range order in the surface layer. In addition, the density of specific adsorption ensembles is analyzed as a function of Pt surface content. Possible conclusions on the process for surface alloy formation are discussed. The results are compared with the properties of PtRu bulk alloys and the findings in previous adsorption studies on similar surface alloys (H. Rauscher, T. Hager, T. Diemant, H. Hoster, F. Bautier de Mongeot and R. J. Behm, Surf. Sci., 2007, 601, 4608; T. Diemant, H Rauscher and R. J. Behm, J. Phys. Chem. C, in press).  相似文献   

13.
We present predictions of reaction rate constants for dissociative adsorption reactions of CO(x) (x = 1, 2) and NO(x) (x = 1, 2) molecules on the basal graphite (0001) surface based on potential energy surfaces (PES) obtained by the integrated ONIOM(B3LYP:DFTB-D) quantum chemical hybrid approach with dispersion-augmented density functional tight binding (DFTB-D) as low level method. Following an a priori methodology developed in a previous investigation of water dissociative adsorption reactions on graphite, we used a C(94)H(24) dicircumcoronene graphene slab as model system for the graphite surface in finite-size molecular structure investigations, and single adsorbate molecules reacting with the pristine graphene sheet. By employing the ONIOM PES information in RRKM theory we predict reaction rate constants in the temperature range between 1,000 and 5,000 K. We find that among CO(x) and NO(x) adsorbate species, the dissociative adsorption reactions of CO(2) and both radical species NO and NO(2) are likely candidates as a cause for high temperature oxidation and erosion of graphite (0001) surfaces, whereas reaction with CO is not likely to lead to long-lived surface defects. High temperature quantum chemical molecular dynamics simulations (QM/MD) at T = 5,000 K using on-the-fly DFTB-D energies and gradients confirm the results of our PES study.  相似文献   

14.
Research on Chemical Intermediates - Lead molybdate (PbMoO4) and chromium-substituted lead molybdate (PbCr1?x Mo x O4) were successfully synthesized using a microwave-assisted method and...  相似文献   

15.
The stability of PdRu/Ru(0001) and PtRu/Ru(0001) surface alloys and the tendency for surface segregation of Pd and Pt subsurface guest metals in these surface alloys is studied by scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Atomic resolution STM imaging and AES measurements reveal that upon overgrowing the surface alloys with a 1–2 monolayer Ru film and subsequent annealing to the temperatures required for initial surface alloy formation, the Ru‐covered Pd (Pt) atoms float back to the outermost layer. The lateral distribution of these species is also essentially identical to that of the initial surface alloys, before overgrowth by Ru. In combination, this clearly demonstrates that the surface alloys represent stable surface configurations, metastable only towards entropically favored bulk dissolution, and that there is a distinct driving force for surface segregation of these species. Consequences of these data on the mechanism for surface alloy formation are discussed.  相似文献   

16.
Infrared spectroscopy has been used to characterise synthesised hydrotalcites of formula Mg(x)Zn(6 - x)Cr2(OH)16(CO3) x 4H2O and Ni(x)Co(6 - x)Cr2(OH)16(CO3) x 4H2O. The infrared spectra are conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. Three carbonate antisymmetric stretching vibrations are observed at around 1358, 1387 and 1482 cm(-1). The 1482 cm(-1) band is attributed to the CO stretching band of carbonate hydrogen bonded to water. Variation of the intensity ratio of the 1358 and 1387 cm(-1) modes is linear and cation dependent. By using the water bending band profile at 1630 cm(-1) four types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface (c) coordinated water and (d) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite interlayer as it is hydrogen bonded to both the carbonate anion, adjacent water molecules and the hydroxyl surface.  相似文献   

17.
利用程序升温还原(TPR)方法,研究了甲烷部分氧化制甲醛催化剂MoO3/SiO2及添加金属氧化物的MoO3·MxOy/SiO2(M=V、Fe、Ni、Cr、Cu)催化剂上,活性组分在载体上的分散及MoO3与MxOy的相互作用.发现钼含量的提高不利于MoO3在SiO2上的分散,催化剂表面晶相MoO3随钼含量的提高而增多.SiO2上担载的活性组分有一个最佳值,对应于最佳催化活性.MoO3·MxOy/SiO2催化剂中MoO3与MxOy发生了不同的相互作用,影响催化剂表面的活性氧物种,导致它们对甲烷氧化活性和甲醛选择性的不同.MoO3·V2O5/SiO2是比较好的催化剂,且V2O5添加量有最佳值,对应甲烷氧化制甲醛也有较高的活性和选择性.  相似文献   

18.
In the present study, elemental Cu is deposited on the clean CdTe(111)-B surface and annealed in vacuum. Surface-composition maps generated by scanning Auger microcopy provide evidence that a reaction occurs between Cu and the CdTe(111)-B substrate that results in the formation of a metastable copper telluride phase Cu(x)Te (x approximately 2) at the surface. In situ thermal-desorption mass spectrometry measurements show that elemental Cd is released during the reaction and desorbs from the surface. Desorption of Te from the substrate is suppressed during the reaction. Analysis of Cd desorption traces demonstrates that the Cu + CdTe(111)-B reaction proceeds via zero-order kinetics, with an activation energy of 180 +/- 5 kJ mol(-1).  相似文献   

19.
HPMo self-assembly on carbon nanotubes followed by decomposition is used to fabricate highly dispersed MoO(x)/CNTs as a support for high performance of a Pt catalyst towards methanol oxidation.  相似文献   

20.
应用简单的刮涂法以及真空煅烧可制备出承载在铜箔表面的二氧化钼-碳(MoO2-C)复合涂层,并对样品的形貌、成分、结构和电化学性能进行分析.结果表明,该复合涂层由单斜结构的MoO2纳米粒子和无定形碳组成.一些MoO2纳米粒子承载在碳基体表面,其尺寸为5~30nm;一些MoO2纳米粒子包覆在碳基体内部,其尺寸约为5nm. MoO2-C复合涂层为多孔结构,其孔隙尺寸为1~3nm.该复合涂层与铜箔结合紧密,界面处没有裂纹.承载在铜箔表面的MoO2-C复合涂层的比容量高、循环和倍率性能良好.在100mA·g-1电流密度下,该负极经过100次循环后的比容量为814mAh·g-1,在循环过程中没有出现明显的容量衰减,即使在5000mA·g-1的高电流密度下,其比容量仍有188mAh·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号