首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetraaryloxy-substituted perylene tetracarboxylic acid bisimides with one or two 4-pyridyl receptor substituents at the imide functionality were synthesized and employed in transition metal directed self-assembly with Pd(II) and Pt(II) phosphane triflates. Upon mixing of the components, quantitative formation of functional molecular square-type complexes containing four dye molecules and model complexes of a 2:1 (perylene bisimide ligand:transition metal ion) stoichiometry was observed. The isolated metallosupramolecular squares were characterized by 1H and 31P [1H] NMR spectroscopy as well as conventional electrospray ionization (ESI) and ESI-FTICR mass spectrometry, which gave evidence for the structure and the high stability of these giant cyclic dye assemblies (molecular weight (3a) 8172, Pt-Pt corner diagonal ca. 3.4 nm). Studies of the optical absorption and fluorescence properties and the electrochemistry and spectroelectrochemistry of both the perylene bisimide ligands and the perylene bisimide metal complexes show that Pt(II) coordination does not interfere with the optical and electrochemical properties of the perylene bisimide ligands; this gives squares with high fluorescence quantum yields (phiF (3a)=0.88) and three fully reversible redox couples. The latter could be unambiguously related to quantitative formation of perylene bisimide radical cations (E1/2 = +0.93 V vs. Fc/Fc+), radical anions (E1/2= - 1.01 V vs. Fc/Fc+), and dianions (E1/2 = -1.14 V vs. Fc/Fc+); these redox reactions change the charge state of the cyclic assembly from +12 to zero. In contrast, Pd(II) coordination influenced the electrochemical properties of the assembly because of an irreversible palladium reduction at E1/2= -1.15 V versus Fc/Fc+. Finally, dynamic ligand exchange processes between different metallosupramolecular assemblies were investigated by multinuclear NMR and electrospray mass spectrometry. These studies confirmed the reversible nature of the pyridine-Pt(II)/Pd(II) coordination process.  相似文献   

2.
In this Forum Article, we discuss the use of redox-active pincer-type ligands to enable multielectron reactivity, specifically nitrene group transfer, at the electron-poor metals tantalum and zirconium. Two analogous ligand platforms, [ONO] and [NNN], are discussed with a detailed examination of their similarities and differences and the structural and electronic constraints they impose upon coordination to early transition metals. The two-electron redox capabilities of these ligands enable the transfer of organic nitrenes to tantalum(V) and zirconium(IV) metal centers despite formal d(0) electron counts. Under the correct conditions, the resulting metal imido complexes can participate in further multielectron reactions such as imide reduction, nitrene coupling, or formal nitrene transfer to an isocyanide.  相似文献   

3.
Nano-sized phosphine and pyridine ligands having tetraphenylphenyl-, m-terphenyl-, poly(benzylether) moieties were synthesized. These ligands showed a remarkable effect on homogeneous transition metal catalyzed reactions. Pd(II) complexes with tetraphenylphenyl substituted pyridine ligands show high catalytic activities for oxidation of ketones suppressing Pd black formation and maintains the catalytic activity for a long time. Rh(I) complex catalysts with m-terphenyl substituted phosphine ligands showed remarkable rate acceleration in the hydrosilylation of ketones. In addition, several phosphinocalixarene ligands were synthesized and their coordination studies with Pd(II), Pt(II), Ru(II), Ir(I), and Rh(I) metals were documented. Ir(I) and Rh(I) cationic complexes with a 1,3,5-triphosphinocalix[6]arene ligand showed dynamic behavior with size-selective molecular recognition.  相似文献   

4.
To explore the potential of the coordination chemistry of Pd and Pt halides with phosphinoacetylene ligands for the generation of novel, highly metallated organometallic coordination polymers, investigations on model compounds [MX2(PPh2 C identical to CPh)2] that exhibit trans-configured Pd centers and cis-configured Pt centers have been performed. The molecular structure of the trans-Pd complexes 2 (M = Pd, X = Br) and 5 (M = Pd, X = I) appeared suitable for the generation of linear materials, whereas the cis-Pt complex 6 (M = Pt, X = I) suggested the prospective formation of ring systems. The presence of acetylene moieties allowed for further increase of metal concentration by cluster formation with [Co2(CO)8]. Two novel bimetal cluster complexes 7 and 8 were obtained from 5 and 6, respectively, and these exhibit a bridging iodine ligand as an interesting structural motif leading to heterocyclic systems with M-I-Co-C-P skeletons (M = Pd or Pt). A similar approach with [Fe2(CO)9] led to the formation of several products, including an unusual Pd-Fe cluster-containing compound 10. The extension of the coordination strategy to rigid bis(phosphinoacetylene) ligands gave rise to strained ring systems. Surprisingly, for the cis-configured PtCl2 center, a rarely observed triangular structure 12 was obtained exclusively. The corresponding PtI2 analog, 13a rearranged over time to form a "ring-fused" system 13b with an extended BINAP-like ligand.  相似文献   

5.
A series of homoligated Ni(II) complexes formed from two phosphino thioether (P,S) chelating ligands has been synthesized and characterized. Interestingly, this included octahedral Ni(II) complexes which, unlike previously characterized d(8) Rh(I), Pt(II), and Pd(II) analogues, exhibit in situ exchange processes centered around chloride ligand dissociation. This was verified and studied through the controlled abstraction from and introduction of chloride ions to this system, which showed that these processes proceed through complexes with square pyramidal, tetrahedral, and square planar geometries. These complexes were studied with a variety of characterization methods, including single-crystal X-ray diffraction studies, solution (31)P{(1)H} NMR spectroscopy, UV-vis spectroscopy, and DFT calculations. A general set of synthetic procedures that involve the use of coordinating and noncoordinating counteranions, as well as different hemilabile ligands, to mediate geometry transformations are presented.  相似文献   

6.
This short account summarizes recent results obtained in the coordination chemistry of phosphinines and emphasizes their analogy with CO ligands. Reduced complexes can be easily assembled through the reaction of reduced 2,2′-biphosphinine dianions with transition metal fragments. Theoretical calculations were performed to establish the oxidation state of the metal in these complexes. Though many reduced complexes are available, phosphinines proved to be too sensitive toward nucleophiles to be used as efficient ligands in most catalytic processes. However, the high electrophilicity of the phosphorus atom can be exploited to synthesize phosphacylohexadienyl anions which exhibit a surprising coordination chemistry. When phosphino sulfide groups are incorporated as ancillary tridentate anionic SPS ligands can be easily produced. These ligands can bind different transition metal fragments such as M-X (M = group 10 metal, X = halogen), Rh-L (L = 2 electron donor ligand), Cu-X and Au-X (X = halogen). Palladium(II) complexes proved to be active catalyst in the Miyaura cross-coupling reaction. Bidentate anionic PS ligands were also synthesized following a similar approach. Their Pd(II) (allyl) derivatives showed a very good activity in the Suzuki catalyzed cross-coupling process that allows the synthesis of biphenyl derivatives through the reaction of phenylboronic acid with bromoarenes.  相似文献   

7.
Polyaza-polyoxa macrobicyclic ligands: its synthesis and metal complexes. The synthesis of the polyaza-polyoxa macrobicyclic ligands 1–4 is described. They form complexes with a variety of metal cations, transition metal cations as well as alkali and alkaline-earth cations. These complexes may be formulated as cation inclusion complexes, cryptates, in which the cation is contained in the intramolecular cavity. The properties of the complexes are described. An especially interesting feature is that these ligands, polymines of macrobicyclic topology, provide a means of trapping transition metal cations inside a molecular cavity; thus they impose coordination geometries and may modify the spectral and redox properties of the cations.  相似文献   

8.
The field of molecular transition metal complexes with redox-active ligands is dominated by compounds with one or two units of the same redox-active ligand; complexes in which different redox-active ligands are bound to the same metal are uncommon. This work reports the first molecular coordination compounds in which redox-active bisguanidine or urea azine (biguanidine) ligands as well as oxolene ligands are bound to the same cobalt atom. The combination of two different redox-active ligands leads to mono- as well as unprecedented dinuclear cobalt complexes, being multiple (four or six) center redox systems with intriguing electronic structures, all exhibiting radical ligands. By changing the redox potential of the ligands through derivatisation, the electronic structure of the complexes could be altered in a rational way.  相似文献   

9.
Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C(60) and C(70)). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.  相似文献   

10.
The self-assembly of open ditopic and tetratopic cavitand complexes has been investigated by using monofunctionalized cavitand ligands and suitable metal precursors. In the case of ditopic complexes, self-assembly protocols, leading exclusively to the formation of both thermodynamically stable cis-Pt square-planar complexes 8 and 9 and the kinetically inert fac-Re octahedral complex 14, have been elaborated. The use of cis-[Pt(CH3)CN)2Cl2] as metal precursor led to the formation of monotopic trans-10 and ditopic trans-11 cavitand complexes, while cis-[Pt(dmso)2Cl2] afforded both cis-13 and trans-11 isomers. The self-assembly of tetratopic cavitand complexes has been achieved by using mononuclear [Pd(CH3CN)4(BF4)2] and dinuclear [M2(tppb)(OTf)4] (19: M = Pt; 20: M = Pd) metal precursors. Only the tetratopic dinuclear complexes 21 and 22 were stable. The ligand configuration with two phosphorus and two cavitand ligands at the metal centers is the most appropriate to build tetratopic cavitand complexes with sufficient kinetic stability.  相似文献   

11.
New group 11 d10 (Cu, Au) metal complexes with SPS pincer ligand were synthesized. Insoluble dimeric or oligomeric complexes [(SP(R)S)Cu](n) (R = Bu:4, Me:5) were readily cleaved by several two-electron donor ligands (phosphines, isocyanides, pyridine) to yield a range of new complexes (6-13). X-Ray crystal studies were performed on complexes 7, 8, 9, 11, which revealed distorted tetrahedral geometries and proved once again the flexibility of the SPS ligand, which can accommodate square planar, tetrahedral, octahedral and trigonal bipyramidal geometries. A dimeric gold species with an Au-Au interaction 16 was also synthesized. This dimer could be cleaved with two electron donor ligand (PPh(3):17, RNC: 18). Reactivity of complex 11 with ethyl diazoacetate yielded new lambda5-phosphinine 14.  相似文献   

12.
Density functional methods have been used to calculate the geometries, electronic structure and ionization energies (IE) of N-heterocyclic carbene complexes of palladium and platinum, [M(CN2R2C2H2)2](M = Pd, Pt; R = H, Me, Bu t). Agreement with X-ray structures (R = Bu t) was good. Calculated IE agreed well with the photoelectron (PE) spectra (R = Bu t); metal bands were calculated to be within 0.25 eV of the experimental values, whereas the higher lying ligand bands deviated by up to 0.9 eV. Spin-orbit methods were needed to achieve this level of agreement for the Pt complex, but the calculations were found to underestimate the spin-orbit splitting somewhat. The principal metal-ligand bonding is between the carbene lone pair HOMO and a (d(z2)+ s) hybrid on the metal. The metal p(z) orbital contributes very little to the bonding. The metal d(xz,yz) orbitals mix primarily with the filled pi3 orbitals on the ligands and secondarily with the empty pi5 orbitals. Consequently they are little stabilized in comparison to the metal d(xy,x2- y2) orbitals, which are non-bonding in the complex. The first PE band for both the Pd and Pt complexes is from ionization of a (s - d(z2)) hybrid orbital. The IE is greater for Pt than for Pd on account of the post-lanthanide relativistic stabilization of the Pt 6s orbital.  相似文献   

13.
A strategy for the controlled construction of heterobimetallic discrete complexes and 1-D coordination networks is presented. The organic ligand based on the methanedithiolate group and the 4,5-diazafluorene moiety behaving as primary and secondary coordination poles respectively leads to the formation of a series of discrete metal complexes with various geometries via binding through the dithiolate site. The observed coordination geometries range from square-planar for Ni(ii) and Pd(ii) to distorted tetrahedral for Zn(ii) and Hg(ii). The square-planar Pd(ii) complex affords a discrete bimetallic trinuclear complex when treated with a capped Ni(ii) center. All three Ni(ii), Pd(ii) and Hg(ii) discrete complexes have been also shown to behave as metallatectons leading to the generation of infinite networks in the presence of bridging cations such as sodium.  相似文献   

14.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

15.
A bis(imino)acenaphthene (BIAN) ligand containing a pendant Lewis base has been used as a new framework to support a N-heterocyclic phosphenium cation (NHP). Reactivity studies demonstrate the ability of the ligand to act as a Lewis base, while the phosphorus centre provides a Lewis acidic site, giving new opportunities in NHP chemistry.  相似文献   

16.
The electronic structures of [M(L(Bu))(2)](-) (L(Bu)=3,5-di-tert-butyl-1,2-benzenedithiol; M=Ni, Pd, Pt, Cu, Co, Au) complexes and their electrochemically generated oxidized and reduced forms have been investigated by using sulfur K-edge as well as metal K- and L-edge X-ray absorption spectroscopy. The electronic structure content of the sulfur K-edge spectra was determined through detailed comparison of experimental and theoretically calculated spectra. The calculations were based on a new simplified scheme based on quasi-relativistic time-dependent density functional theory (TD-DFT) and proved to be successful in the interpretation of the experimental data. It is shown that dithiolene ligands act as noninnocent ligands that are readily oxidized to the dithiosemiquinonate(-) forms. The extent of electron transfer strongly depends on the effective nuclear charge of the central metal, which in turn is influenced by its formal oxidation state, its position in the periodic table, and scalar relativistic effects for the heavier metals. Thus, the complexes [M(L(Bu))(2)](-) (M=Ni, Pd, Pt) and [Au(L(Bu))(2)] are best described as delocalized class III mixed-valence ligand radicals bound to low-spin d(8) central metal ions while [M(L(Bu))(2)](-) (M=Cu, Au) and [M(L(Bu))(2)](2-) (M=Ni, Pd, Pt) contain completely reduced dithiolato(2-) ligands. The case of [Co(L(Bu))(2)](-) remains ambiguous. On the methodological side, the calculation led to the new result that the transition dipole moment integral is noticeably different for S(1s)-->valence-pi versus S(1s)-->valence-sigma transitions, which is explained on the basis of the differences in radial distortion that accompany chemical bond formation. This is of importance in determining experimental covalencies for complexes with highly covalent metal-sulfur bonds from ligand K-edge absorption spectroscopy.  相似文献   

17.
We wish to report the synthesis, crystal structures, spectroscopic and electrochemical properties of several new Pt(II) heteroleptic complexes containing the thiacrown, 9S3 (1,4,7-trithiacyclononane) with a series of substituted phenanthroline ligands and related diimine systems. These five ligands are 5,6-dimethyl-1,10-phenanthroline(5,6-Me2-phen), 4,7-dimethyl-1,10-phenanthroline(4,7-Me2-phen), 4,7-diphenyl-1,10-phenanthroline(4,7-Ph2-phen), 2,2′-bipyrimidine(bpm), and pyrazino[2,3-f]quinoxaline or 1,4,5,8-tetraazaphenanthrene(tap). All complexes have the general formula [Pt(9S3)(N2)](PF6)2 (N2 = diimine ligand) and form similar structures in which the Pt(II) center is surrounded by a cis arrangement of the two N donors from the diimine chelate and two sulfur atoms from the 9S3 ligand. The third 9S3 sulfur in each structure forms a longer interaction with the platinum resulting in an elongated square pyramidal structure, and this distance is sensitive to the identity of the diimine ligand. In addition, we report the synthesis, structural, electrochemical, and spectroscopic properties of related Pd(II) 9S3 complex with tap. The 195Pt NMR chemical shifts for the six Pt(II) complexes show a value near −3290 ppm, consistent with a cis-PtS2N2 coordination sphere although more electron-withdrawing ligands such as tap show resonances shifted by almost 100 ppm downfield. The physicochemical properties of the complexes generally follow the electron-donating or withdrawing properties of the phenanthroline substituents.  相似文献   

18.
This review covers almost two hundred and twenty heterobinuclear platinum compounds in which Pt?M separation is over 3.0 ?. The M is a transition metal (Cu, Ag, Au, Ti, V, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni and Pd). There is an example of a lanthanide, Yb and a actinide, U. The Pt atom has oxidation numbers 0, +2 and +4. The Pt coordination geometries include trigonal planar Pt(0); square planar Pt(II); trigonal bipyramidal, and pseudo octahedral Pt(IV), with the most frequent being square planar. The most common ligands for Pt are P and C donor atoms, as well as a chlorine atom. The Pt ?? Ag distance of 3.002(1) ? is the shortest found in this series. There are examples which contain two crystallographically independent molecules, which differ mostly by degree of distortion and even one unique example, which contains eight such molecules. These are examples of distortion isomerism. Factors affecting bond lengths and angles are discussed and some ambiguities in coordination polyhedral are outlined.  相似文献   

19.
The Pt0 complex [Pt(PPh3)(Eind2‐BPEP)] with a pyridine‐based PNP‐pincer‐type phosphaalkene ligand (Eind2‐BPEP) has a highly planar geometry around Pt with ∑(Pt)=358.6°. This coordination geometry is very uncommon for formal d10 complexes, and the Pd and Ni homologues with the same ligands adopt distorted tetrahedral geometries. DFT calculations reveal that both the Pt and Pd complexes are M0 species with nearly ten valence electrons on the metals whereas their atomic orbital occupancies are evidently different from one another. The Pt complex has a higher occupancy of the atomic 6s orbital because of strong s–d hybridization due to relativistic effects, thereby adopting a highly planar geometry reflecting the shape and orientation of the partially unoccupied orbital.  相似文献   

20.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号